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Introduction

Denote by Id ⊂ Ia ⊂ D the subgroups Id = Z/2, Ia = Z/4 in the dihe-
dral group D. Let d : RPn−k → Rn be a map in general position, having
critical points, where k ≡ 0 (mod 2). Let Nn−2k(d) be the manifold of dou-
ble self-intersection points of the map d with the boundary ∂Nn−2k(d). We
say that this map d admits a cyclic structure, if there exists a mapping
µa,N(d) : (Nn−2k(d), ∂Nn−2k(d))→ (K(Ia, 1), K(Id, 1)), satisfying the bound-
ary condition:

µa,N(d)|∂Nn−2k(d) = (ia ◦ κ)|∂N(d), (1)

where κ : RPn−k → K(Id, 1) is the generating cohomology class, ia :
K(Id, 1) ⊂ K(Ia, 1) is the inclusion of a subgroup id,a : Id ⊂ Ia. More-
over for an arbitrary integer q satisfying the condition n ≥ n− 2k − 2q ≥ 1,
the following equation is satis�ed:

〈µ∗a,N(dq)(tq); [Nn−2k−2q(dq), ∂N
n−2k−2q(dq)]〉 = 1, (2)

where tq ∈ Hn−2k−2q(K(Ia, 1), K(Id, 1);Z/2) is an arbitrary cohomol-
ogy class which is mapped to the generator of the cohomology group
Hn−2k−2q(K(Ia, 1);Z/2) by the induced homomorphism

j∗ : Hn−2k−2q(K(Ia, 1), K(Id, 1);Z/2)→ Hn−2k−2q(K(Ia, 1);Z/2),

and [Nn−2k−2q(dq), ∂N
n−2k−2q(dq)] is the relative fundamental class.
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Main Theorem. For 3(n − k) < 2n, i.e. in the metastable range, there

exists a generic PL-mapping d0 : RPn−k → Rn with singularities admitting a

cyclic structure.

Remark. In the paper [Akh] this theorem was proved under weaker dimen-
sional assumption. For applications the case 5(n− k) < 4n is required.

1 Auxiliary mappings

Construction of axillary mappings c0 : RPn−k → Rn, ĉ0 : Sn−k/i→ Rn

Let us denote by J0 ⊂ Rn the standard sphere of dimension (n − k) in
Euclidean space. This sphere is PL - homeomorphic to the join of n−k+1

2
= r0

copies of the circles S1. Let us denote by

iJ0 : J0 ⊂ Rn (3)

the standard embedding.
The mapping p′0 : Sn−k → J0 is well de�ned as the join of r0 copies of the

standard 4-sheeted coverings S1 → S1/i. The standard action Ia × Sn−k →
Sn−k commutes with the mapping p′0. Thus, the map p̂0 : Sn−k/i → J0 is
well de�ned and the map p0 : RPn−k → J0 is well de�ned as the composition
p̂0 ◦ π0 : RPn−k → J0 of the standard double covering π0 : RPn−k → Sn−k/i
with the map p̂0.

The required mapping c0 is denoted by the composition iJ0 ◦p0 : RPn−k →
J0 ⊂ Rn. The required mapping ĉ0 is denoted by the composition iJ0 ◦ p̂0 :
Sn−k/i→ Rn.

2 Con�guration spaces and singularities

Subspaces and factorspaces of the 2-con�guration space for RPn−k,

related with the axillary mapping c0

The space Γ0 is the 2-points con�guration space of RPn−k. The subspace
Γ0◦ ⊂ Γ0 is the subspace outside the diagonal of Γ0. The structural mapping
ηΓ0◦ : Γ0◦ → K(D, 1) is well de�ned.

Denote by Σ0◦ ⊂ Γ0◦ the polyhedron of double-points singularities of
the map p0 : RPn−k → J0: {[(x, y)] ∈ Γ0◦, p0(x) = p0(y), x 6= y}. This
polyhedron is equipped with a structural mapping

ηΣ0◦ : Σ0◦ → K(D, 1), (4)
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which is induced by the restriction of the structural mapping ηΓ0◦ on the
subspace Σ0◦.

Let us denote by Σantidiag ⊂ Γ0◦ a subspace, called the antidiagonal, which
is formed by all antipodal pairs {[(x, y)] ∈ Γ0◦ : x, y ∈ RPn−k, x 6= y, TRP(x) =
y}.

The subpolyhedron Σ0◦ ⊂ Γ0◦ of multiple-points of the map p is repre-
sented by a union Σ0◦ = Σantidiag ∪K0◦, where K0◦ is an open subpolyhedron
contains all points of Σ0◦ outside the antidiagonal.

Denote the closure of Cl(K0◦) of the polyhedron K0◦ in Γ0 by K0. Denote
by Qantidiag the space Σantidiag ∩K0, denote by Qdiag the space ∂Γdiag ∩K0.
Obviously, Qdiag ⊂ K0, Qantidiag ⊂ K0. We shall call these subspaces the
components of the boundary of the polyhedron K0.

Note that the structural mapping of ηK0◦ is extended from K0◦ to the
component Qantidiag of the boundary. Denote this extension by ηQantidiag

:
Qantidiag → K(D, 1). The mapping ηQantidiag

is a composition ηantidiag :
Qantidiag → K(Ia, 1) and the inclusion iIa,D : K(Ia, 1) ⊂ K(D, 1).

Note that the mapping ηK0 is not extendable to boundary component
Qdiag. The mapping ηdiag : Qdiag → K(Id, 1) is well de�ned. Let us denote
by U(Qdiag◦) ⊂ K0◦ a small regular deleted neighborhood of Qdiag. The
projection projdiag : U(Qdiag◦) → Qdiag of the regular deleted neighborhood
to Qdiag. The restriction of the structural mapping ηK0◦ to the neighborhood
U(Qdiag◦) is represented by a composition of the map ηU(Qdiag◦) : U(Qdiag◦)→
K(Ib, 1) and the maps iIb,D : K(Ib, 1)→ K(D, 1). Homotopy classes of maps
ηK0|Qdiag

and ηU(Qdiag◦) satisfy the equation:

ηdiag ◦ projdiag = pIb,Id ◦ ηU(Qdiag◦).

Resolution spaces for the polyhedra K0, K̂0

We construct a space RK0, which we call resolution space of the polyhedron
K0.

K(Ia, 1)
φ0←− RK0

pr0−→ K0 (5)

Let us introduce the following notations: RQdiag = (pr0)−1(Q̂diag),
RQantidiag = (pr0)−1(Qantidiag). These spaces are included in the following
commutative diagrams:

RQantidiag
pr−→ Qantidiag

φ0 ↘ ↙ ηantidiag
K(Ia, 1),

(6)
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RQdiag
pr−→ Qdiag

φ0 ↘ ↙ ηdiag
K(Id, 1).

(7)

To prove the main result of the section we need following lemma.

Lemma 1. There is a RK0 which is included in the commutative diagram

(5). Moreover, the following commutative diagrams (6), (7), determine the

boundary conditions.

The beginning of the proof of Main Theorem

Consider the map ĉ0 : Sn−k/i→ Rn. The mapping d̂0 is obtained from ĉ0 by
an arbitrary C1-small deformation in the codimension 3, this deformation is
vertical with respect to the orthogonal projection projJ0 of a small neighbor-
hood UJ0 of the embedded sphere iJ0 : J0 ⊂ Rn on its central sphere Im(iJ0).
The mapping d0 : RPn−k → Rn de�ne as the result of an additional generic
PL�deformation. The caliber of the deformation d̂0 ◦ π0 7→ d0 is much less
then the caliber of the deformation ĉ0 7→ d̂0.

The following commutative diagram (8) of maps of polyhedra with de-
scribed boundary conditions under the diagram is well de�ned. To the spaces
in the third line of this diagram are mapped the spaces of the central line of
the commutative diagram (9) correspondingly.

K(Ia, 1)

↑ φ0 ↖ φ0

RK0 ←− RQdiag ∪RQantidiag

↓ pr0 ↓

K0 ⊃ Qdiag ∪Qantidiag

∪ ∪

K0◦ ⊃ ∅

↓ ηK0

K(D, 1).

(8)
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K(Ia, 1)

↑ µa ↖ µa

(N0 \N30)′ ⊃ (N0 \N30)′diag ∪ (N0 \N30)′antidiag

∪ ∪

(N0◦ \N30◦)
′ ⊃ ∅

↓ ηK0

K(D, 1).

(9)

In this dyagrame by

Nl0◦ ⊂ N0◦ (10)

is denoted the subpolyhedron of self-intersection points of the map d′0 =
π0 ◦ d̂0 : RPn−k → Rn of the multiplicity of l and above, where l = 3.

The polyhedron N30◦ ⊂ N0◦ of self-intersection points of the multiplicity
greater or equal to 3 is given by the formula:

N30◦ = {(x, y) ∈ K0◦|∃z ∈ RPn−k, z 6= x, z 6= y : d′0(z) = d′0(x) = d′0(y)}.(11)

Lemma 2. There exists a small vertical PL-deformation ĉ0 7→ d̂0 such that

for the subpolyhedron (N0 \ N30)′ ⊂ (N0 \ N30) ⊂ N0 ⊂ K0 in the middle

row of the commutative diagram (9) there exists a map t0 : (N0 \ N30)′ →
RK0, called L-resolution, to the corresponding spaces of the second row of the

diagrams (8). The map µN0\N30 : (N0 \ N30)′ → K(Ia, 1) are de�ned by the

formula µN0\N40 = φ0 ◦ t0. This maps are uniquely extendable to the required

map µa : N0 → K(Ia, 1).
Moreover, for the map µa the boundary condition over the components

Ndiag, Nantidiag of the boundary are well de�ned and are given below the dia-

gram (9).
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3 Coordinate system angle-momentum on the

spaces of singularities and construction of the

resolution spaces

A preliminary step in the proof of Lemma 2

Let us present the plan of the proof. We start by an explicit description of
the polyhedra K0 and the structural maps η on these polyhedra by means
of coordinates. Then we construct the spaces RK0, equipped with maps
pr0 : RK0 → K0 and the mapping φ0 : RK0 → K(Ia, 1), which satisfy
required boundary conditions (5), (6).

The strati�cation of polyhedra J0, K0, K̂0 K0◦, K̂0◦ by means of the

coordinate system angle - momentum

Let us order lens spaces, which form the join, by the integers from 1 up to
r0 and let us denote by J0(k1, . . . , ks) ⊂ J0 the subjoin, formed by a selected
set of circles (one-dimensional lens spaces) S1/i with indexes 1 ≤ k1 < · · · <
ks ≤ r0, 0 ≥ s ≥ r0. The strati�cation above is induced from the standard
strati�cation of the open faces of the standard r0-dimensional simplex δr0

under the natural projection J0 → δr0 . The preimages of vertexes of a
simplex are the lens spaces J0(j) ⊂ J0, J0(j) ≈ S1/i, 1 ≤ j ≤ r0, generating
the join.

De�ne the space J
[s]
0 as a subspace of J0, obtained by the union of all

subspaces J0(k1, . . . , ks) ⊂ J0.
Denote the maximum open cell of the space p̂−1(J0(k1, . . . , ks)) by

Û(k1, . . . , ks) ⊂ Sn−k/i. This open cell is called an elementary stratum of
the depth (r0−s). A point at an elementary stratum U(k1, . . . , ks) ⊂ Sn−k/i
is de�ned by a set of coordinates (x̌k1 , . . . , x̌ks , l), where x̌ki is a coordinate
on the 1-sphere (circle), covering lens space with the number ki, l is a coor-
dinate on the corresponding (s − 1)-dimensional simplex of the join. Thus
if the two sets of coordinates are identi�ed under the transformation of the
cyclic Ia-covering by means of the generator, which is common to the entire
set of coordinates, then these sets de�ne the same point on Sn−k/i. Points
on elementary stratum Û(k1, . . . , ks) belong in the union of simplexes with
vertexes belong to the lens spaces of the join with corresponding coordinates.
Each elementary strata Û(k1, . . . , ks) is a base space of the double covering
U(k1, . . . , ks) → Û(k1, . . . , ks), which is induced from the double covering
RPn−k → Sn−k/i by the inclusion Û(k1, . . . , ks) ⊂ Sn−k/i.

The polyhedron K0◦ = K0 \ (Qdiag ∪Qantydiag) is slitted into the union of
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open subsets (elementary strata) K0(k1, . . . , ks), 1 ≤ s ≤ r0 correspondingly
with the strati�cation

J
(r0)
0 ⊂ · · · ⊂ J

(1)
0 ⊂ J

(0)
0 , (12)

of the space J0. For the considered stratum a number r0 − s of missed
coordinates to the full set of coordinates is called the deep of the stratum.

Let us describe an elementary stratum K0(k1, . . . , ks) by means of the
coordinate system. To simplify the notation let us consider the case s = r0.
Suppose that for a pair of points (x1, x2), de�ning a point on K(1, . . . , r0),
the following pair of points (x̌1, x̌2) on the covering space Sn−k is �xed, and
the pair (x̌1, x̌2) is mapped to the pair (x1, x2) by means of the projection
of Sn−k → RPn−k. Accordingly to the construction above, we denote by
(x̌1,i, x̌2,i), i = 1, . . . , r0 a set of spherical coordinates of each point. Each
such coordinate with the number i de�nes a point on 1-dimensional sphere
(circle) S1

i with the same number i, which covers the corresponding circle
J0(i) ⊂ J0 of the join. Note that the pair of coordinates with the common
number determines the pair of points in a common layer of the standard
cyclic Ia-covering S

1 → S1/i.
The collection of coordinates (x̌1,i, x̌2,i) are considered up to independent

changes to the antipodal. In addition, the points in the pair (x1, x2) does
not admit a natural order and the lift of the point in K0 to a pair of points
(x̄1, x̄2) on the sphere Sn−k, is well determined up to 8 di�erent possibilities.
(The order of the group D4 is equal to 8.)

An analogous construction holds for points on deeper elementary strata
K0(k1, . . . , ks), 1 ≤ s ≤ r0.

Let us reformulate the above de�nition of the polyhedron K̂
[i]
0 , 0 ≤ i ≤ r0.

We de�ne this polyhedron as the disjoint union of all elementary strata of
the depth i. When i ≥ 1 are considered strata, from the diagonal or the an-
tidiagonal. (For i = 0 diagonal and antidiagonal striata are not considered.)

The coordinate description of elementary strata of the spaces K0,◦

Let x ∈ K0(1, . . . , r0) be a point on a maximal elementary stratum. Consider
the sets of spherical coordinates x̌1,i è x̌2,i, 1 ≤ i ≤ r0 of the point x. For
each i the following cases: a pair of i-th coordinates coincides; antipodal, the
second coordinate is obtained from �rst by the transformation by means of
the generator (or by the minus generator) of the cyclic cover. Associate to
an ordered pair of coordinates x̌1,i and x̌2,i, 1 ≤ i ≤ r0 the residue vi of a
value +1, −1, +i or −i, respectively.

When the collection of coordinates of a point is changed to the antipodal
collection, say, the collection of coordinates of the point x2 is changed to the

7



antipodal collection, the set of values of residues of the new pair (x̄1, x̄2) on
the spherical covering is obtained from the initial set of residues by changing
of the signs. The residues of the renumbered pair of points change by the
inversion. Obviously, the set of residues does not change, if we choose another
point on the same elementary stratum of the space K0◦.

Elementary strata of the space K0(1, . . . , r0), in accordance with sets of
residues, are divided into 3 types: Ia, Ib, Id. If among the set of residues are
only residues {+i,−i} (respectively, only residues {+1,−1}), we shall speak
about the elementary stratum of the type Ia (respectively of the type Ib). If
among the residues are residues from the both set {+i,−i} and {+1,−1}, we
shall speak about elementary stratum of the type Id. It is easy to verify that
the restriction of the structure mapping η : K0◦ → K(D4, 1) on an elementary
stratum of the type Ia, Ib, Id is represented by the composition of a map in the
space K(Ia, 1) (respectively in the space K(Ib, 1) or K(Id, 1)) with the map
ia : K(Ia, 1)→ K(D4, 1) (respectively, with the map ib : K(Ib, 1)→ K(D4, 1)
or id : K(Id, 1) → K(D4, 1)). For the �rst two types of strata the reduction
of the structural mapping (up to homotopy) is not well de�ned, but is de�ned
only up to a composition with the conjugation in the subgroups Ia, Ib.

Description of the structural map η◦ : K0◦ → K(D, 1), by means of

the coordinate system

Let x = [(x1, x2)] be a marked a point on K(0, ◦), on a maximal elementary
stratum. Consider closed path λ : S1 → K0,◦, with the initial and ending
points in this marked point, intersecting the singular strata of the depth
1 in a general position in a �nite set of points. Let (x̌1, x̌2) be the two
spherical preimages of the point x. De�ne another pair (x̌′1, x̌

′
2) of spherical

preimages of x, which will be called coordinates, obtained in result of the
natural transformation of the coordinates (x̌1, x̌2) along the path λ.

At regular points of the path λ the family of pairs of spherical preimages
in the one-parameter family is changing continuously, that uniquely iden-
ti�es the inverse images of the end point of the path by the initial data.
When crossing the path with the strata of depth 1, the corresponding pair of
spherical coordinates with the number l is discontinuous. Since all the other
coordinates remain regular, the extension of regular coordinates along the
path at a critical moment time is uniquely determined. For a given point x
on elementary stratum of the depth 0 of the spaces K0,◦ the choice of at least
one pair of spherical coordinates is uniquely determines the choice of spheri-
cal coordinates with the rest numbers. Consequently, the continuation of the
spherical coordinates along a path is uniquely de�ned in a neighborhood of
a singular point of the path.
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The transformation of the ordered pair (x̌1, x̌2) to the ordered pair (x̌′1, x̌
′
2)

de�nes an element the group D. This element does not depend on the choice
of the path l in the class of equivalent paths, modulo homotopy relation
in the group π1(K0◦, x). Thus, the homomorphism π1(K0◦, x) → D is well
de�ned and the induced map

η◦ : K0◦ → K(D, 1) (13)

coincides with structural mapping, which was determined earlier. It is easy
to verify that the restriction of the structural mapping η on the connected
components of a single elementary stratum K0◦(1, . . . , r) is homotopic to
a map with the image in the subspeces K(Ia, 1), K(Ib, 1), K(Id, 1), which
corresponds to the type and subtype elementary stratum.

Consider an elementary stratum K0(k1, . . . , ks) ⊂ K
(r0−s)
0◦ of the depth of

(r0 − s). Denote by

π : K0(k1, . . . , ks)→ K(Z/2, 1) (14)

the classifying map, that is responsible for the permutation of a pair of points
around a closed path on this elementary stratum.

The mapping π coincides with the composition

K0(k1, . . . , ks)
η−→ K(D4, 1)

p−→ K(Z/2, 1),

where K(D4, 1)
p−→ K(Z/2, 1) be the map of the classifying spaces, which is

induced by the epimorphism D4 → Z/2 with kernel Ic ⊂ D4 .
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