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Outline.

1. Background: B-S conditions
2. Toric Integrable Systems
3. Singular Toric Systems
4. Relation to Geodesic Flow

The topics discussed here come from joint
work with Alejandro Uribe, and earlier work
with Uribe, V. Guillemin and Z. Wang.
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1. Background

Geometric quantization seeks to associate a
quantization (space of wave functions, oper-
ators, etc.) to a classical mechanical system.
One is given

• a symplectic manifold M,ω

• A line bundle L on M with connection∇,
such that

c1(L,∇) =
1

2πi
Curvature(∇) = ω.

• A polarization = integrable distributionF
of Lagrangian tangent subspaces of TM⊗C

We refer to the two extreme cases:

1. The real case: F = F0⊗C, where F0 ⊂
TM

2. The complex case: M,ω is Kähler, L
is holomorphic, ∇ is the canonical (Chern)

connection and F = T (0,1)M

The space of wave functions should be W =
{sections s of L|∇ξs = 0,∀ξ tangent to F}.
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For the real case, wave functions WR are
sections of L covariant constant along the
leaves Λ of F .

For the complex case WC = H0(M,O(L)),
the space of holomorphic sections of L.

If this has (hopefully) anything to do with
physics, one expects/requires the spaces of
wave functions to be independent of polar-
ization, and ideally there should be a cor-
respondence relating the operators, etc., of
two such representations.

The most explicit case is that of a com-
pletely integrable systemH on a Kähler man-
ifold M,ω with positive line bundle L as
above. We have a set of generating Hamil-
tonians

H1, . . . , Hn, n = dimCM,

defining the Lagrangian foliation by their
level sets, and suitably normalized, the quan-
tized, or Bohr-Sommerfeld levels, are given
by

Hi ∈ Z, i = 1, . . . , n.



5

The line bundle with connection (L,∇) has
curvature zero restricted to each level of H.
Bohr-Sommerfeld levels are precisely those
where a global flat section of L exists on
the (connected) level. Such is unique up to
non-zero scaling, and we call it sΛ, if Λ is
a Bohr-Sommerfeld level. Thus, in first ap-
proximation, the real quantization of M,L
is

WR = ⊕Λ∈B.S. C · sΛ,

where we have not stated the Hilbert space
structure.

Following Andrei Tyurin, we say that the
numerical Bohr-Sommerfeld correspondence
holds if

dimCWR = dimCWC.

and we say that a linear map

B : WR → WC

gives an exact Bohr-Sommerfeld correspon-
dence if it is an isomorphism.
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Since WR is a set of distributional sections
of L, there is a natural candidate for a lin-
ear operator B given by the Bergman kernel
projecting distributional sections of L onto
the subspace of holomorphic sections.

Tyurin supposed that this map did display
an exact B-S correspondence in great gen-
erality, but the theorem of Borthwick-Paul-
Uribe cited as proof is (1) about asymptotic

behavior of sections of L⊗N , as N → +∞,
and (2) is an argument about amplitudes
of sections. Amplitudes may still suffice to
show the exact B-S property for B, but it
presently seems to depend on information
on phases.
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We discuss special cases of this correspon-
dence here. In particular, we show that ex-
act BS as formulated here holds for toric va-
rieties, and more interestingly, for singular
(projective) toric varieties. We give a de-
generation argument which shows that this
latter case allows one to verify exact BS for
a number of singular integrable systems on
Kähler varieties, such as the classical Gelfand-
Tsetlin system on the flag manifold, and sys-
tems related to the geodesic flow on the com-
plex quadrics, and speculatively, on all com-
pact rank one symmetric spaces (CROSSes).
Some open problems will be mentioned along
the way.
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2. Toric Systems.

A toric system is a Hamiltonian action of
a torus T n on M,ω, which lifts to the line
bundle L. It is holomorphic if the action
is by holomorphic transformations of M . If
H1, . . . , Hn are generating Hamiltonians for
the torus action, such Hi are then Cω on M .

Let µ = (H1, . . . , Hn) : M → t∗, the dual
of the Lie algebra of T n, be the moment map
of the action. Recall that, suitably normal-
ized, its image is a polytope ∆ with inte-
ger vertices. Here a level Λ of µ is Bohr-
Sommerfeld iff Hi|Λ ∈ Z,∀i, that is

B-S levels↔ ∆Z = ∆ ∩ t∗Z.

Theorem 1. B is an isomorphism

B : ⊕m∈∆ZCΛm → H0(M,O(L)).

Proof. Every m ∈ ∆Z determines a char-
acter χm of T n. We note the following sim-
ple facts:
• sΛm is a (distributional) eigensection of L
for T n with character χm;
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• The line bundle L has a section sm, unique
up to scale, such that sm transforms under
character χm on T nC;
• m is in the interior F o of a unique face
F ⊂ ∆, and sm 6= 0 on µ−1(F o) ⊂ M . In

particular, sm 6= 0 on µ−1(m) = Λm.
• B is T n-equivariant.

Putting these together, we have by equiv-
ariance, B(sΛm) = cmsm, for some constant
cm ∈ C. To show cm 6= 0, we note that

〈B(sΛm), sm〉 = cm‖sm‖2,

and

〈B(sΛm), sm〉 =

∫
Λm

bmdλm 6= 0,

where bm is a non-zero constant, and λm
is invariant measure on Λm, which is T n-
homogeneous.

�

This was noted by DB, Guillemin and
Uribe, and subsequently by M. Hamilton,
independently.
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In the above, our M was non-singular and
the action of T n was holomorphic. We can
relax the condition that the action of T n

be holomorphic, and then Delzant showed
that M,ω,H is symplectomorphic to a
holomorphic system as above. This is
characterized by a ∆ which is a “Delzant
polytope” in such cases. However, for
every convex polytope ∆ with integer
vertices, we can construct a polarized,
normal toric variety, which for L >> 0 will
be projectively embedded. Such a variety
has a natural torus action, and by pulling
back the Fubini-Study form from PN we
can give Hamiltonians for the action such
that the moment polytope is this same ∆.

Theorem 1bis. Theorem 1 also holds for
a singular, projective toric variety.

Proof. The same proof works. The theory
of toric varieties still gives that sm 6= 0 on
µ−1(F o) as above. The L2 structure comes

from 1
n!ω

n = 1
n!(ωFS|M)n.
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3. Singular Toric Systems.
We now consider systems where we have
an integrable system with Cω
Hamiltonians, but for which the torus
action generators are not Cω. Here are
some simple examples.

1. The simplest example is to consider the
unit sphere M = S2 ⊂ R3 with the usual
metric and its oriented area form, and let
the Hamiltonian H = |z|, where z is the
vertical coordinate. The flow of H is
periodic on M \ {z = 0}, and on {z = 0}
the flow is indeterminate. The flow rotates
counterclockwise around both the north
pole N and the south pole S. The moment
polytope is the interval [0, 1] with all points
covered with multiplicity 2 except 0, which
has multiplicity 1. In particular, unlike the
Delzant case, µ−1(ζ) is not connected,

ζ ∈ (0, 1]. Note that z2 ∈ Cω(M)
generates the same integrable system.
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2. The classical versions of the
Gelfand-Tsetlin systems on complex flag
manifolds are of this sort
(Guillemin-Sternberg). The generators of
the torus action are algebraic functions
(solutions of algebraic equations over Cω
functions), and the torus action is not
defined on special real analytic sets.

3. Let K be a compact Zoll manifold, and
let M = T ∗K//r=r0S

1 be the symplectic
cut of T ∗M by the geodesic flow at r = r0,
where r is the length function. M is a
compact, symplectic manifold with a
periodic Hamiltonian r induced from r on
T ∗M . Example 1 above is the case
K = S1, r0 = 1. (M. Audin considered
such symplectic cuts recently.) For the
standard examples of Zoll manifolds, the
so-called CROSSes, the cuts above can be
identified with Hermitian symmetric spaces
of rank 2, and we find Gelfand-Tsetlin-like
systems there showing the complete
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integrability of geodesic flow, sometimes by
multiple inequivalent systems.
In examples such as the Gelfand-Tsetlin
systems, there cannot be a smooth
Hamiltonian T d action on the flag manifold
Fn, d = dimC Fn, but the Gelfand-Tsetlin
has, a posteriori, a convex moment
polytope ∆ for the image of µ, which is
only an algebraic map. Many authors –
Kogan-Miller and Alekseev-Brion, for
example – have constructed “flat projective
degenerations” of such varieties to the
singular toric variety determined by ∆,
and similarly for other spherical varieties
with integrable systems. A. Knutson was
the first we know of who claimed that in
some cases the integrable system would
also degenerate to a toric system.
Nishinou-Nohara-K. Ueda have recently
used the toric degeneration of the
Gelfand-Tsetlin system to prove very
interesting results about the potential
function in Lagrangian Floer theory for a
Lagrangian fiber of the Gelfand-Tsetlin
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system. Howard-Millson have discussed
degeneration of the polygon space system.
Here are some definitions and set-up.

a.) A flat degeneration of X1 to a toric
variety X0 will be a flat and proper
holomorphic map π : X → B of connected
varieties, where 0 and b1 are two points of
B, and we are given identifications of
X0 = π−1(0) and a toric variety with

polytope ∆, and π−1(b1) with X1. We
have a line bundle L on X . Set Lb = L|Xb,
and assume dimCH

0(Xb,O(Lb)) is
independent of b ∈ B.

b.) We assume we are given a singular
toric action on X1 with moment polytope
∆ (such as a G-T system), and that the
singular Hamiltonians have extensions to
Xb, b ∈ B which converge towards the
Hamiltonians of the toric variety X0 as
b→ 0. These systems on each Xb have
moment polytope ∆, independent of b ∈ B.
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c.) We are vague about the convergence,
which can be technical at this level. What
we really want is simply: the normalized
Bohr-Sommerfeld distributions s̃Λm(b)(of

mass 1) converge weakly to s̃Λm(0) as
distributions, for all m ∈ ∆Z.

Our main statement here is the following
perturbation result:

Theorem 2. Given the set-up above, we
have that the exact Bohr-Sommerfeld
correspondence holds on Xb, for b close to
0.

Remark. Theorem 2 seems local in
nature, but in all examples known to verify
the set-up, any system on X1 is, in fact,
equivalent to a system on Xb for b
arbitrarily close to 0, which would give
that exact Bohr-Sommerfeld holds for X1

as well.
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Proof. From our result on singular toric
varieties, we know B(s̃Λm(0)),m ∈ ∆Z is a
basis, and we know by the constancy of
dimension that R0π∗(L) is locally free,

with fibers H0(Xb,O(Lb)) for the
corresponding vector bundle E. We can
extend the basis of H0(X0,O(L0)) to a
local holomorphic frame σ1, . . . , σd, of E,
d = dimCH

0(X0,O(L0)) = |∆Z|. We note

that the measures 1
n!ω

n
b vary continuously

on Xb’s, so that we can orthonormalize the
σi’s continuously, and then the Bergman
kernels vary continuously, too, in b. This
follows from the construction in terms of
the Gramm-Schmidt process. Finally
consider the d× d complex matrix-valued
functionM(b), given by

M(b) = (Mi,j(b)) =

(〈Bb(s̃Λm), σj(b)〉) =
(〈
s̃Λm(b), σj(b)

〉)
,

where m = mi runs over ∆Z, and
j = 1, . . . , |∆Z|. But this last is continuous
in b and is invertible at b = 0. Thus exact
Bohr-Sommerfeld holds for small b.
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Remarks.

1.) For the Gelfand-Tsetlin system, this
method does not yet give that the
Bohr-Sommerfeld distributions are sent
canonically to the so-called Gelfand-Tsetlin
basis of H0, since the singular torus action
does not give an action on H0. However,
the original papers of Gelfand and Tsetlin
showed these basis elements were the
common eigenfunctions of an abelian
algebra of quantum observables (operators)
of higher order. It remains to see whether
these operators have good limits as b→ 0,
and how they operate on the
Bohr-Sommerfeld distributions s̃Λ(b). The
classical observables are the Hamiltonians,
and they correspond to first order
operators – their flows – on L. In the very
simple example 1 above, the square z2 is
smooth and corresponds to the second

order operator (ζ ∂∂ζ )
2, which does behave

well as b→ 0. The Bohr-Sommerfeld
distributions are eigensections for this
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operator, for all b ∈ C, as is seen in the
last section.

2.) The above framework for showing the
exact Bohr-Sommerfeld correspondence
does not seem to have an immediate
“physical interpretation.” R. Szőke (1998)
has studied (implicitly) this kind of
degeneration in one case as a limit as
~→ 0.

3.) Recently
Baier-Florentino-Mourão-Nunes have
studied a large complex structure limit to
retrieve the real polarization as a limit of
the complex polarization on a toric
manifold. It is not known whether one can
take such a limit for singular toric systems
such as Gelfand-Tsetlin, and deduce
anything about the Bohr-Sommerfeld
correspondence in this way.
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4.) This degeneration method already
appears for non-singular toric systems.
Consider a Hirzebruch surface F2k, k ≥ 1,
which is a toric variety. We can deform it
smoothly to an F2k′ for any k′ < k. Under
this deformation, we can extend the
symplectic structure, the holomorphic line
bundle and the Hamiltonian action. By
Delzant’s theorem, this system on F2k′ has
a holomorphic realization, which is just our
original system on F2k. This system
cannot be represented holomorphically on
F2k′, so there is no way to use holomorphic
toric equivariance to show exact
Bohr-Sommerfeld for this system on F2k′.
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4. Relation to Geodesic Flow.
We have seen that for a Zoll manifold K
the symplectic cut T ∗K//r=r0S

1 = Mr0

gave a compact model of the geodesic flow.
In the case K is a compact symmetric
space of rank 1 (CROSS), there is a
natural complex structure on T ∗K
(Guillemin-Stenzel, Lempert-Szőke), which
is Isomo(K)-equivariantly biholomorphic
to an affine variety (Patrizio-Wong). By
rescaling, one can compactify this to a
projective variety X . E.g.,
K = Sn, T ∗K = Qn

aff , X = Qn. Note that

Qn \ Qn
aff = Qn−1, which enables

inductive procedures.

Definition. Given a (singular) completely

integrable system H on T ∗r0K/S
1, there is

a (singular) CIS on T ∗K, the suspension
of H, containing r as the new Hamiltonian.
The moment polytope of this system is the
suspension of the original one.
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Example. If K = S3, and we consider Q2

as a toric variety, we suspend the toric
system to T ∗S3//r=r0S

1, where it gives the
geodesic system as completely integrable,
taken with a T 2 of isometries acting on S3.
The moment polytope is the suspension of
a square (a “pyramid”), and the
non-Delzant vertex is equivalent to the
non-Delzant vertex in the Gelfand-Tsetlin
polytope for F3. Note that anytime we
take the suspension of any integrable
system on Qn−1, we display the
(compactified) geodesic flow on Qn as
completely integrable.

The toric rank of a singular toric system is
the dimension of the subgroup which acts
by holomorphic automorphisms. The toric
rank of the last example is 2. Suspension
preserves the toric rank.

There is one more inductive procedure
called push-out from Qn−1 to Qn which
will raise the toric rank by 1. One cannot
repeat push-out successively.
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Theorem 3. One can use the above
moves to show the geodesic system is
completely integrable on Sn. The system
can be taken to have maximal toric rank if
n is odd.

Corollary. One can degenerate these
systems on Qn to toric varieties so that
exact Bohr-Sommerfeld holds for them.


