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Introduction –Cohomological rigidity problem–

Cohomological rigidity problems

.
Problem (Cohomological Rigidity Problem)
..

.

. ..

.

.

Are M and M ′ homeomorphic (or diffeomorephic) if
H∗(M) ≃ H∗(M ′)?

.
Answer
..

.

. ..

.

.

In general, the answer is NO.
E.g., “the Poincaré homology sphere” and “the standard sphere”.

.
However
..

.

. ..

.

.

If we restrict the class of the manifolds, the answer is sometimes
affirmative.
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Introduction –Cohomological rigidity problem–

Example which satisfies the cohomological rigidity

.
Definition
..

.

. ..

.

.

We say the quotient manifold

Hk = S3 ×S1 P(Ck ⊕ C)

the Hirzebruch surface, where Ck is the representation space C with
k times rotated S1-action for k ∈ Z.

.
Remark
..

.

. ..

.

.

Hk is the projectivization of the sum of two line bundles over CP1,
i.e., Hk is a CP1-bundle over CP1.
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Introduction –Cohomological rigidity problem–

How to prove the cohomological rigidity of Hk

.
Theorem (Hirzebruch 1951)
..

.

. ..

.

.

Hk
∼= Hk+2, i.e., their topological types are at most

H0 = CP1 × CP1 or

H1 = S3 ×S1 P(C1 ⊕ C).

.
Corollary
..
.
. ..

.

.Hirzebruch surfaces satisfy the cohomological rigidity.

.
Proof.
..

.

. ..

.

.

By comparing their cohomology rings

H∗(H0) ≃ Z[x , y ]/⟨x2, y 2⟩,
H∗(H1) ≃ Z[x , y ]/⟨x2, y(y + x)⟩.
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Introduction –Cohomological rigidity problem–

Cohomological Rigidity Problem of Toric manifolds
.
Fact
..
.
. ..

.

.

(Hk ,T
2) is a (quasi)toric manifold

.
Problem (Masuda-Suh ’06)
..

.

. ..

.

.

Let M and M ′ be two (quasi)toric manifolds.

M ∼= M ′ ??⇐⇒ H∗(M) ≃ H∗(M ′).

.
Remark
..

.

. ..

.

.

This problem is still open. Moreover, many partial affirmative
answers are proved by Masuda-Panov, Choi-Masuda-Suh, etc.

.

.

. ..
.

.In this talk, we study this problem for toric hyperKähler manifolds.
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Toric hyperKähler manifolds

Toric hyperKähler manifolds

We define Tm-action on Hm = Cm ⊕ Cm by

(z ,w) · t = (zt,wt−1).

.
Then
..

.

. ..

.

.

The hyperKähler moment map

µR ⊕ µC : Hm → (tm)∗ ⊕ (tmC )
∗

can be defined as

(µI =)µR(z ,w) =
1

2

m∑
i=1

(|zi | − |wi |)∂i ∈ (tm)∗;

(µJ +
√
−1µK =)µC(z ,w) = 2

√
−1

m∑
i=1

(ziwi)∂i ∈ (tmC )
∗.
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Toric hyperKähler manifolds

Constructive definition by hyperKähler quotient

.
Moreover
..

.

. ..

.

.

For a subgroup K
ι
↪→ Tm, we also have the hyperKähler moment

map of the restricted K -action on Hm by

µHK : Hm → k∗ ⊕ k∗C

by µHK = (ι∗ ⊕ ι∗C) ◦ (µR ⊕ µC).

.
Definition
..

.

. ..

.

.

We say the hyperKähler quotient for α ̸= 0(∈ k∗)

Mα = µ−1
HK (α, 0)/K

a toric hyperKähler variety.
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Toric hyperKähler manifolds

Example

Let K = ∆ be the diagonal subgroup in T n+1.
The moment map µHK =: Hn+1 → R⊕ C is defined by

µHK (z ,w) =
1

2

n+1∑
i=1

(|zi | − |wi |)⊕ 2
√
−1

n+1∑
i=1

(ziwi).

Let α = 1 ∈ R. It is easy to show that

M1 = µ−1
HK (1, 0)/∆ = T ∗CPn

with the induced T n = T n+1/∆ action on CPn.
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Toric hyperKähler manifolds

Some properties of toric hyperKähler varieties

.
Proposition (Bielawski-Dancer 2001)
..

.

. ..

.

.

A toric hyperKähler variety satisfies the following properties:

Mα is a 4n-dimensional, non-compact orbifold, where
n = m − dimK.

Mα has the T n = Tm/K-action.

The smooth part of Mα has a T n-invariant hyperKähler
structure.

Let X be a toric manifold. Its cotangent bundle T ∗X is an open
submanifold for some toric hyperKähler orbifold M.

T ∗X is a toric hyperKähler manifold
iff⇐⇒ X =

∏
j CPnj .

Its topological structure is detemined by the combinatorial data
of a hyperplane arrangement.
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Toric hyperKähler manifolds

Hyperhamiltonian structure

(Mα,T
n) is hyperhamiltonian, i.e., this action preserves the

hyperKähler structure, and there is a hyperKähler moment map
µ̃α̂ = µ̃R ⊕ µ̃C : Mα → (tn)∗ ⊕ (tnC)

∗ such that

µ̃R[z ,w ] =
1

2

m∑
i=1

(|zi | − |wi |)∂i − α̂ ∈ ker ι∗ ≃ (tn)∗ ⊂ (tm)∗;

µ̃C[z ,w ] = 2
√
−1

m∑
i=1

(ziwi)∂i ∈ ker ι∗C ≃ (tnC)
∗ ⊂ (tmC )

∗,

where α̂ ∈ (tm)∗ such that ι∗(α̂) = α.
.
Summary
..

.

. ..

.

.

A lift α̂ ∈ (tm)∗ of α ∈ k∗ determines a hyperKähler moment
map on Mα.
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Toric hyperKähler manifolds

Equivalence relations

Let (Mα,T
n, µ̃α̂) and (Mβ,T

n, µ̃β̂) be 4n-dim toric hyperKähler
manifolds with hyperKähler moment maps.

.
Definition
..

.

. ..

.

.

We say (Mα,T
n, µ̃α̂) and (Mβ,T

n, µ̃β̂) are weakly isomorphic if there
is a weak T n-diffeomorphism f : Mα → Mβ s.t.

...1 f preserves the hyperKähler structure;

...2 if f (xt) = f (x)φ(t) for φ : T n → T n, the following diagram is
commute:

Mα
f−→ Mβ

µ̃α̂ ↓ ↓ µ̃β̂

(tnR⊕C)
∗ φ∗
←− (tnR⊕C)

∗

where (tnR⊕C)
∗ = (tn)∗ ⊕ (tnC)

∗.
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Main theorem

Equivariant cohomology

In order to state main theorem, we introduce the equivariant
cohomology.
.
Definition
..

.

. ..

.

.

Let (M ,T ) be a T -space. We say H∗(ET ×T M) an equivariant
cohomology and denote it H∗

T (M).

.
Remark
..

.

. ..

.

.

H∗
T (M) is not only ring but also H∗(BT )-algebra by

ET ×T M ←↩ M
π ↓
BT

H∗
=⇒

H∗
T (M) → H∗(M)
π∗ ↑

H∗(BT )
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Main theorem

Main theorem 1
.
Theorem
..

.

. ..

.

.

(Mα,T , µα̂) ≡w (M ′
α′ ,T , µ′

α̂′)
iff⇐⇒ there is a weak algebra

isomorphism f ∗T : H∗
T (Mα;Z)→ H∗

T (M
′
α′ ;Z) s.t. (f ∗T )R(α̂) = α̂′,

where

(f ∗T )R : (tm)∗ ≃ H2
T (Mα;R)

f ∗T−→ H2
T (M

′
α′ ;R) ≃ (tm)∗

.
Definition
..

.

. ..

.

.

We say f ∗T a weak algebra isomorphism, if there is

φ : H∗(BT )
≃→ H∗(BT ) s.t. the following diagram is commute:

H∗(BT ) → H∗
T (Mα)

φ ↓ ↓ f ∗T
H∗(BT ) → H∗

T (M
′
α′).
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Main theorem

Main theorem 2

.
Theorem
..

.

. ..

.

.

Two toric hyperKähler manifolds are diffeomorphic
iff⇐⇒ their

cohomology rings are isomorphic and their dimensions are same.

.
Theorem (Bielawsky 1999)
..

.

. ..

.

.

LetMn be the set of all complete, connected, 4n-dimensional,
hyperKähler manifolds with effective, hyperhamiltonian T n-actions.
Then all elements inMn are diffeomorphic to toric hyperKähler
manifolds, and vice versa.

.
Corollary
..
.
. ..

.

.Mn satisfies the cohomological rigidity.
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Shintarô Kuroki (KAIST) Cohom. rigidity of toric hyperKähler 16th Aug. 2010 (Moscow) 15 / 26



. . . . . .

Main theorem

Remark of the cohomological rigidity theorem

LetM = ∪nMn be the set of all toric hyperKähler manifolds.
Now, T ∗CPn and T ∗CPn ×Hℓ are elements ofM.
It is sasy to show that

H∗(T ∗CPn) ≃ H∗(T ∗CPn ×Hℓ);

however,

T ∗CPn ∼= T ∗CPn ×Hℓ iff⇐⇒ ℓ = 0.

.
Thereofore
..
.
. ..

.

.M does not satisfy the cohomological rigidity.
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. . . . . .

Outline of proof

Hyperplane arrangements

To define the toric hyperKähler variety Mα, we need to use the exact
sequence

(tn)∗
ρ∗−→ (tm)∗

ι∗−→ k∗,

and the non-zero element α ∈ k∗.
There is a lift α̂ ∈ (tm)∗ of α, i.e., ι∗(α̂) = α.

.
Definition
..

.

. ..

.

.

The hyperplane arrangement Hα̂ = {H1, . . . ,Hm} is defined by the
set of hyperplane

Hi = {x ∈ (tn)∗ | ⟨ρ∗(x) + α̂, ei⟩ = 0}

where ei (i = 1, . . . , m) is the basis of tm ≃ Rm.
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. . . . . .

Outline of proof

Example

T ∗CP2 is constructed by ∆
ι
↪→ T 3 and α = 1 ∈ k∗. Then

ι∗ : (t3)∗ ∋ (a, b, c) 7→ a + b + c ∈ k∗

ρ∗ : (t2)∗ ∋ (x , y) 7→ (x , y ,−x − y) ∈ (t3)∗.

We may take α̂ = (1, 0, 0) ∈ (t3)∗.
Because Hi = {(x , y) ∈ (t2)∗ | ⟨(x , y ,−x − y) + (1, 0, 0), ei⟩ = 0},

H1 = {(−1, y) | y ∈ R};
H2 = {(x , 0) | x ∈ R};
H3 = {(x ,−x) | x ∈ R}.
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. . . . . .

Outline of proof

Basic properties of hyperplane arrangements

induced by toric hyperKähler manifolds

.
Proposition (Bielawski-Dancer)
..

.

. ..

.

.

A toric hyperKähler variety (Mα,T
n, µ̃α̂) is a smooth manifold

iff⇐⇒
its hyperplane arrangement Hα̂ = {Hi} is smooth, i.e.,

...1 dim∩i∈IHi = n −#I , if ∩i∈IHi ̸= ∅;

...2 if #I = n then {ρ∗(ei) | i ∈ I} spans (tnZ)∗.

.
Remark
..
.
. ..

.

.

ρ∗(ei) ∈ tn determines the (weighted) normal vector of Hi .
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. . . . . .

Outline of proof

Examples of hyperplanes

The left two figures do not appear but the right figure appears as the
hyperplane arrangements of toric hyperKähler manifolds.
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. . . . . .

Outline of proof

Fundamental theorems

.
Theorem (Bielawski-Dancer)
..

.

. ..

.

.

The following two sets are 1:1
...1 Smooth (Mα,T

n, µα̂) up to hyperhamiltonian.
...2 Smooth Hα̂ up to weighted, cooriented, affine arrangement.

.
Theorem (Konno)
..

.

. ..

.

.

Let (M ,T ) be a toric hyperKähler manifold and H = {H1, . . . ,Hm}
be its hyperplane arrangement. . Then

H∗
T (M ;Z) ≃ Z[τ1, . . . , τm]/I

where deg τi = 2, and the ideal I is generated by
∏

j∈J τj such that
∩j∈JHj = ∅.
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. . . . . .

Outline of proof

Proof 1 –Equivariant cohomological rigidity–

The outline of a proof of the 1st theorem is as follows:

Step1 Using the Konno’s theorem, we define the hyperplane
arrangement in H∗

T (M).

Step2 If (Mα,T
n, µ̃α̂) is a toric hyperKähler manifold, its

hyperplane arrangement Hα̂ and the hyperplane
arrangement in H∗

T (M) defined in Step1 are equivalent
(i.e., same arrangement).

Step3 For the generator τ ∈ H∗
T (M), we can define Z (τ) called

the zero length of τ by the number of τ |p = 0 for
p ∈ MT .

Step4 If Z (τ) = 0, then Mα = M ′
α′ ×H for the unique

(4n − 4)-dim toric hyperKähler manifold M ′
α′ .

Hence, we may regard Z (τ) ̸= 0.
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. . . . . .

Outline of proof

Step5

Let f : H∗
T (Mα) ≃ H∗

T (Mα′) as weak H∗(BT )-algebra.
Using the fact that Z (τ) = Z (f (τ)), we have

f : {τ1, . . . , τm} → {τ ′1, . . . , τ ′m}

up to sign. Therefore, their hyperplane arrangemets are equivalent up
to coorinetations.
It follows from the Bielawski-Dancer’s theorem that

(Mα,T , µα̂) ≡w (M ′
α′ ,T , µα̂′).

.
Remark
..

.

. ..

.

.

This rigidity is strongly, i.e., f : H∗
T (Mα) ≃ H∗

T (Mα′) induces the
weak isomorphism (Mα,T , µα̂) ≡w (M ′

α′ ,T , µα̂′).
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. . . . . .

Outline of proof

Proof 2 –Cohomological rigidity–
.
Theorem (Bielawski-Dancer)
..

.

. ..

.

.

The diffeomorphism type of toric hyperKähler manifolds does not
depend on the combinatorial structure of their hyperplane
arrangements.

Therefore, by using Proposition about hyperplane arrangements of
toric hyperKähler manifolds, the diffeomorphism types of toric
hyperKähler manifolds are products of the following two manifolds:

M1(k1, . . . , kn);

M2(k0, k1, . . . , kn),

where ki is the number of hyperplanes which are perpendicular to ei
(i = 1, . . . , n) and k0 is the number of hyperplanes which are
perpendicular to e1 + · · ·+ en.
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Outline of proof

Examples of M1(k1, k1, . . . , kn) and

M2(k0, k1, . . . , kn)

The following left is M1(3, 2) and the right is M2(1, 2, 1):

.
Remark
..
.
. ..

.

.

M1(k1, . . . , kn) = M1(k1)× · · · ×M1(kn), where dimM1(ki) = 4.
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Outline of proof

Final step of the proof

If f : H∗(M1(k1, . . . , kn)) ≃ H∗(M1(k
′
1, . . . , k

′
n)), then

(k1, . . . , kn) ≡ (k ′
1, . . . , k

′
n) up to permutation by comparing Ann(τ)

and Ann(f (τ)). (By using the similar argument, we can also prove
for the products of M1’s and M2’s.)
For example, the following M2(1, 2, 1) and M2(2, 1, 1) have the same
cohomology ring:

Therefore, by Theorem (Bielawski-Dancer), we have the 2nd theorem.
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