Finite group actions on aspherical spaces

Lev Lokutsievskiy

Moscow State Univercity

September 6, 2010

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

Homotopy conjugation Homotopy classification Simple illustrative example

Layout

Classification

Homotopy conjugation

- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< ∃ >

Classification Non-free actions Applications Simple illustrative example

Let p be an action of a finite group G on a topological space T.

Problem

Classify all actions of finite groups on topological spaces up to homotopy conjugation.

Certainly we can require some restrictions on space T. For example we can assume that T or T/p(G) is a CW-complex.

Let p_1 and p_2 be actions of finite groups G_1 and G_2 on topological spaces T_1 and T_2 .

Homotopy conjugation

If there exist a homotopy equivalence $\varphi: T_1 \to T_2$ and an isomorphism $\theta: G_1 \to G_2$ such that

$$arphi \circ p_1(g) = p_2ig(heta(g)ig) \circ arphi$$
 for all $g \in \mathcal{G}_1,$

then we say that the actions p_1 is homotopy conjugate to the action p_2 and write $p_1 \sim p_2$.

(日) (同) (三) (三)

Classification Non-free actions Applications Simple illustrative example

Example of \sim asymmetry

Suppose $\mathbb{Z}_2 = \{\pm 1\}$ acts on an infinite dimensional sphere S^{∞} in two ways: trivially $p_1(\pm 1)x = x$ and freely $p_2(\pm 1)x = \pm x$; then $p_2 \sim p_1$ by homotopy equivalence $\varphi : S^{\infty} \to S^{\infty}$ such that

 $\varphi: S^{\infty} \mapsto x_0 \in S^{\infty}.$

But there is no map $\varphi':S^\infty\to S^\infty$ such that

$$arphi'\circ p_1(\pm 1)=p_2(\pm 1)\circ arphi'.$$

So, $p_1 \not\sim p_2$.

(日) (同) (三) (三)

Classification Non-free actions Applications Simple illustrative example

Regular free actions

A free action p of a finite group G on a space T is called regular if the space T/p(G) is a CW-complex.

Clearly if p is a regular then the space T is also a CW-complex.

Lemma (A)

Suppose the actions p_1 and p_2 are free and regular, and the spaces T_1 and T_2 are aspherical; then $p_1 \sim p_2$ iff $p_2 \sim p_1$.

It is obvious that if $p_1 \sim p_2$ then spaces T_1 and T_2 homotopy equivalent.

Moreover using the Whitehead theorem we see that if T_1 and T_2 are aspherical then $T_1/p_1(G)$ and $T_2/p_2(G)$ are homotopy equivalent too.

▲ □ ▶ ▲ □ ▶ ▲

Homotopy conjugation Homotopy classification Simple illustrative example

Layout

1 Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< ∃ >

Let p be a free action of a finite group G on an aspherical space T of type $K(\pi, 1)$. Therefore the long exact sequence of the regular covering $P: T \to T/p(G)$ has the form

$$1 \rightarrow \pi \rightarrow \pi_1(T/p(G)) \rightarrow G \rightarrow 1.$$

Thus we have an extension of G by π . This extension is called a subordinate extension to the free action p.

- A 🗐 🕨 A

Classification Non-free actions Applications Simple illustrative exam

Theorem (A)

Let G be a finite group and π a discrete group. Then the set of all regular free actions (up to homotopy conjugation) of the group G on aspherical spaces of type $K(\pi, 1)$ is in one-to-one correspondence with the set of all classes of equivalent extensions of G by π . Here an action p corresponds to the subordinate extension.

Image: A = A

Classification of discrete group extnsions (up to congruence) is well-known (Eilenberg, MacLane, 1947).

Abelian fundamental group

If the group π is abelian then the action p of G on T induces the action η of G on π :

$$\eta: \mathcal{G} \to \operatorname{Aut} \pi.$$

G-module structure on π is defined by the map η . The set of all congruence classes of extensions of *G* by π is exactly the second cohomology $H^2(G,\pi)$ (the structure of *G*-module on π is fixed).

A (1) > A (2) > A

Homotopy conjugation Homotopy classification Simple illustrative example

Layout

1 Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< ∃ →

 Classification
 Homotopy conjugation

 Non-free actions
 Homotopy classification

 Applications
 Simple illustrative example

Extensions of \mathbb{Z}_2 by \mathbb{Z}

Suppose $G = \mathbb{Z}_2$ and $\pi = \mathbb{Z}$. Let $T = S^1 \times S^\infty$. Thus there exist only three different extensions of \mathbb{Z}_2 by \mathbb{Z} :

Here $(x, y) \in T = S^1 \times S^\infty$ and $S^1 \subseteq \mathbb{C}$.

Borel's construction Spectral sequences Calculation methods

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

Borel's construction

- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

Classification Non-free actions Applications Borel's construction Spectral sequences Calculation methods

Let p be an action (optionally non-free) of a finite group G on an aspherical space T.

Subordinate extension in non-free case

The diagonal free action p_f is induced on the space $T \times \mathbf{E}G$ where $\mathbf{E}G$ is a contractible space and G acts regularly and freely on it. The following extension is called a subordinate extension to the action p:

$$1 \rightarrow \pi_1(T) \rightarrow \pi_1(T \times \mathbf{E}G/G) \rightarrow G \rightarrow 1.$$

・ 同・ ・ ヨ・

Classification Non-free actions Applications Calculation methods

Lemma (B)

The notion of subordinate extension is well defined, i.e., if the action p is free, then the subordinate extensions in first and second sense are equivalent.

▲□ ► < □ ► </p>

3 N

Borel's construction Spectral sequences Calculation methods

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

Borel's construction

Spectral sequences

Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

Classification Non-free actions Applications Calculation methods

There exists a Cartan-Serre's spectral sequence for the diagonal action of G on $T \times \mathbf{E}G$:

$$E_2^{p,q} = H^p(G, H^q(T)) \Rightarrow H^{p+q}((T \times \mathbf{E}G)/G).$$

Here the abelian groups $H^*(T)$ are *G*-modules induced by the action *p*. Since the space *T* is aspherical; then $H^*(T)$ and $H^*((T \times EG)/G)$ are a group cohomology and the previous spectral sequence is the same as a spectral sequence of Hochschild-Mostov for the subordinate extension:

$$E_2^{p,q} = H^p(G, H^q(T)) \Rightarrow H^{p+q}(\pi_1((T \times \mathbf{E}G)/G)).$$

Thus there is an information about relations between cohomology of the group G and the space T in the subordinated extension.

Classification Bor Non-free actions Spe Applications Cal

Borel's construction Spectral sequences Calculation methods

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences

Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< E

Classification	
Non-free actions	
Applications	Calculation methods

Lemma (C)

If the action p has a fixed point x_0 , then the subordinate extension is decomposed, i.e., it is a semidirect product. Here the structure of the semidirect product on $\pi_1((T \times EG)/G)$ is defined by the action of G on $\pi_1(T, x_0)$.

Example

Let \mathbb{Z}_2 act on a circle $S^1 \subseteq \mathbb{C}$ by reflection: $p(\pm 1)x = x^{\pm 1}$. Then $\mathbb{E}\mathbb{Z}_2 = S^{\infty}$ and $p_f = p_3$, i.e., $p_f(\pm 1)(x, y) = (x^{\pm 1}, \pm y)$ where $(x, y) \in S^1 \times S^{\infty}$. So the subordinate extension is

$$1 \to \mathbb{Z} \to \mathbb{Z}_2 \ltimes_{(-1)} \mathbb{Z} \to \mathbb{Z}_2 \to 1.$$

Classification	
Non-free actions	
Applications	Calculation methods

Lemma (D)

Let a finite group G act on an aspherical space T and let H be its subgroup. Consider the induced action of H on T. Then the following diagram is commutative and has exact rows and columns.

Classification	
Non-free actions	Spectral sequences
Applications	Calculation methods

(日)

Topological posets and group lattices Actions on graphs

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< E

Let P be a poset. Consider P as a small category in natural sense. By **B**P denote the classifying space of the small category P.

Let a finite group G act on P with respect to the order. Then this action naturally induces an action on the space **B**P.

By CG and LG denote the coset poset and the subgroup poset of G respectively.

Theorem (B)

Let L be one of the posets CG or LG and let an action of G on L (by conjugation or shift) be fixed. If the classifying space **B**L is aspherical, then there exists a cohomological spectral sequence convergent to the cohomology of the group S:

$$E_2^{p,q} = H^p(G, H^q(L)) \Rightarrow H^{p+q}(S),$$

where $1 \rightarrow \pi_1(\mathbf{B}L) \rightarrow S \rightarrow G \rightarrow 1$ is the exension subordinated to the action of G on **B**L.

▲ □ ▶ ▲ □ ▶ ▲

Topological posets and group lattices Actions on graphs

Layout

Classification

- Homotopy conjugation
- Homotopy classification
- Simple illustrative example

2 Non-free actions

- Borel's construction
- Spectral sequences
- Calculation methods

3 Applications

- Topological posets and group lattices
- Actions on graphs

< E

Classification Non-free actions Applications Topological posets and group lattic Actions on graphs

Since any connected graph is an aspherical space; then any action of a finite group on it induces a subordinate extension.

Topological posets and group lattices Actions on graphs

Dihedral group

Let the dihedral group $G = D_{2n}$, $n \ge 3$ act naturally on a circle $T = S^1$ and let $H = \mathbb{Z}_n \subseteq D_{2n}$. Then using lemma D we get

Consequently, $A = \mathbb{Z}_2 \ltimes \mathbb{Z}$ and $1 \to \mathbb{Z} \to \mathbb{Z}_2 \ltimes \mathbb{Z} \to D_{2n} \to 1$ is the subordinate extension.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- S. Eilenberg, S. MacLane, "Cohomology theory in abstract groups. II. Group extensions with a non-abelian kernel", Ann. Math., 1947, (2) 48, p. 199-236.
- J. Shareshian, "On the shellability of the order complex of the subgroup lattice of a finite group", Trans. Amer. Math. Soc. 353 (2001), 2689–2703.