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Let p be an action of a finite group G on a topological space T .

Problem

Classify all actions of finite groups on topological spaces up to
homotopy conjugation.

Certainly we can require some restrictions on space T .
For example we can assume that T or T/p(G ) is a CW-complex.
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Let p1 and p2 be actions of finite groups G1 and G2 on topological
spaces T1 and T2.

Homotopy conjugation

If there exist a homotopy equivalence ϕ : T1 → T2 and an
isomorphism θ : G1 → G2 such that

ϕ ◦ p1(g) = p2

(
θ(g)

)
◦ ϕ for all g ∈ G1,

then we say that the actions p1 is homotopy conjugate to the
action p2 and write p1 ∼ p2.
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Example of ∼ asymmetry

Suppose Z2 = {±1} acts on an infinite dimensional sphere S∞ in
two ways: trivially p1(±1)x = x and freely p2(±1)x = ±x ; then
p2 ∼ p1 by homotopy equivalence ϕ : S∞ → S∞ such that

ϕ : S∞ 7→ x0 ∈ S∞.

But there is no map ϕ′ : S∞ → S∞ such that

ϕ′ ◦ p1(±1) = p2(±1) ◦ ϕ′.

So, p1 � p2.
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Regular free actions

A free action p of a finite group G on a space T is called regular if
the space T/p(G ) is a CW-complex.

Clearly if p is a regular then the space T is also a CW-complex.

Lemma (A)

Suppose the actions p1 and p2 are free and regular, and the spaces
T1 and T2 are aspherical; then p1 ∼ p2 iff p2 ∼ p1.
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It is obvious that if p1 ∼ p2 then spaces T1 and T2 homotopy
equivalent.

Moreover using the Whitehead theorem we see that if T1 and T2

are aspherical then T1/p1(G ) and T2/p2(G ) are homotopy
equivalent too.
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Let p be a free action of a finite group G on an aspherical space T
of type K (π, 1). Therefore the long exact sequence of the regular
covering P : T → T/p(G ) has the form

1→ π → π1

(
T/p(G )

)
→ G → 1.

Thus we have an extension of G by π. This extension is called a
subordinate extension to the free action p.
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Theorem (A)

Let G be a finite group and π a discrete group. Then the set of all
regular free actions (up to homotopy conjugation) of the group G
on aspherical spaces of type K (π, 1) is in one-to-one
correspondence with the set of all classes of equivalent extensions
of G by π. Here an action p corresponds to the subordinate
extension.
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Classification of discrete group extnsions (up to congruence) is
well-known (Eilenberg, MacLane, 1947).

Abelian fundamental group

If the group π is abelian then the action p of G on T induces the
action η of G on π:

η : G → Aut π.

G -module structure on π is defined by the map η. The set of all
congruence classes of extensions of G by π is exactly the second
cohomology H2(G , π) (the structure of G -module on π is fixed).
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Extensions of Z2 by Z
Suppose G = Z2 and π = Z. Let T = S1 × S∞. Thus there exist
only three different extensions of Z2 by Z:

1→ Z −−→ Z2 × Z → Z2 → 1; p1(±1)(x , y) = (x ,±y)

1→ Z ×2−−→ Z → Z2 → 1; p2(±1)(x , y) = (±x , y)
1→ Z −−→ Z2 n Z → Z2 → 1; p3(±1)(x , y) = (x±1,±y)

Here (x , y) ∈ T = S1 × S∞ and S1 ⊆ C.
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Let p be an action (optionally non-free) of a finite group G on an
aspherical space T .

Subordinate extension in non-free case

The diagonal free action pf is induced on the space T × EG where
EG is a contractible space and G acts regularly and freely on it.
The following extension is called a subordinate extension to the
action p:

1→ π1(T )→ π1(T × EG/G )→ G → 1.
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Lemma (B)

The notion of subordinate extension is well defined, i.e., if the
action p is free, then the subordinate extensions in first and second
sense are equivalent.
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There exists a Cartan-Serre’s spectral sequence for the diagonal
action of G on T × EG :

Ep,q
2 = Hp

(
G ,Hq(T )

)
⇒ Hp+q

(
(T × EG )/G

)
.

Here the abelian groups H∗(T ) are G -modules induced by the
action p. Since the space T is aspherical; then H∗(T ) and
H∗

(
(T × EG )/G

)
are a group cohomology and the previous

spectral sequence is the same as a spectral sequence of
Hochschild-Mostov for the subordinate extension:

Ep,q
2 = Hp

(
G ,Hq(T )

)
⇒ Hp+q

(
π1

(
(T × EG )/G

))
.

Thus there is an information about relations between cohomology
of the group G and the space T in the subordinated extension.
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Lemma (C)

If the action p has a fixed point x0, then the subordinate extension
is decomposed, i.e., it is a semidirect product. Here the structure
of the semidirect product on π1

(
(T × EG )/G

)
is defined by the

action of G on π1(T , x0).

Example

Let Z2 act on a circle S1 ⊆ C by reflection: p(±1)x = x±1. Then
EZ2 = S∞ and pf = p3, i.e., pf (±1)(x , y) = (x±1,±y) where
(x , y) ∈ S1 × S∞. So the subordinate extension is

1→ Z→ Z2 n(−1) Z→ Z2 → 1.
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Lemma (D)

Let a finite group G act on an aspherical space T and let H be its
subgroup. Consider the induced action of H on T . Then the
following diagram is commutative and has exact rows and columns.
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1 1 1

1 π1(T ) π1

(
(T × EH)/H

)
H 1

1 π1(T ) π1

(
(T × EG )/G

)
G 1

1 π1((T×EG)/G)
π1((T×EH)/H) G/H 1

1 1

id P#
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Let P be a poset. Consider P as a small category in natural sense.
By BP denote the classifying space of the small category P.

Let a finite group G act on P with respect to the order. Then this
action naturally induces an action on the space BP.

By CG and LG denote the coset poset and the subgroup poset of
G respectively.
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Theorem (B)

Let L be one of the posets CG or LG and let an action of G on L
(by conjugation or shift) be fixed. If the classifying space BL is
aspherical, then there exists a cohomological spectral sequence
convergent to the cohomology of the group S:

Ep,q
2 = Hp

(
G ,Hq(L)

)
⇒ Hp+q(S),

where 1→ π1(BL)→ S → G → 1 is the exension subordinated to
the action of G on BL.
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Since any connected graph is an aspherical space; then any action
of a finite group on it induces a subordinate extension.
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Dihedral group

Let the dihedral group G = D2n, n ≥ 3 act naturally on a circle
T = S1 and let H = Zn ⊆ D2n. Then using lemma D we get

1 1 1
↓ ↓ ↓

1 → Z ×n−−→ Z → Zn → 1
↓ ↓ ↓

1 → Z → A → D2n → 1
↓ ↓ ↓
1 → Z2 → Z2 → 1

↓ ↓
1 1

Consequently, A = Z2nZ and 1→ Z→ Z2nZ→ D2n → 1 is the
subordinate extension.
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