Cones of effective two-cycles on toric manifolds

Hiroshi Sato Gifu Shotoku Gakuen University, Japan

August 19, 2010

The International Conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone X: smooth projective algebraic variety over \mathbb{C} (projective toric manifold)

 $d := \dim X$

Definition 1 X is Fano if $-K_X = c_1(X) = ch_1(X)$ is ample.

#{smooth toric Fano d-folds up to \cong } < + ∞

Therefore, we can consider the classification problem for toric Fano manifolds.

• (classical) Results

dimension	# of toric Fano	
1	1	\mathbb{P}^1
2	5	\mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, F_1 , S_7 , S_6
3	18	Batyrev, Watanabe-Watanabe
4	124	Batyrev, <mark>Sato</mark>

- Picard number $\rho(X) = 1$, 2, 3, 2d 1, 2d (upper bound).
- Symmetric and pseudo-symmetric.
- With a divisorial contraction to a point or a curve.
- Certain fixed indices.

• (recent) Results

dimension	# of toric Fano	
5	866	Kreuzer-Nill
6	7622	Øbro
7	72256	Øbro
E	÷	l l

• Øbro (2007) constructed an algorithm SFP.

$$\begin{bmatrix} d \in \mathbb{N} \\ input \end{bmatrix} \longrightarrow \begin{bmatrix} \mathsf{SFP} \\ \mathsf{SFP} \end{bmatrix} \longrightarrow \begin{bmatrix} all \text{ the toric Fano } d \text{-folds} \\ output \end{bmatrix}$$

 \implies The classification of toric Fano manifolds has been completed.

Definition 2 (Starr) A Fano manifold X is a 2-Fano manifold if $ch_2(X) = \frac{1}{2}(c_1^2 - 2c_2)$ is a nef 2-cocycle.

Definition 3 A 2-cocycle E is nef if $(E \cdot S) \ge 0$ for any surface S on X.

Example 4 (1) \mathbb{P}^d .

(2) $X \times Y$ (X, Y 2-Fano).

(3) complete intersection $(d_1, \ldots, d_c) \subset \mathbb{P}^n$ s.t. $\sum d_i^2 \leq n+1$.

(4) Grassmannian G(k,n) s.t. $2k \le n \le 2k+2$.

For more (non-toric) examples, see Araujo-Castravet (arXiv 0906.5388).

• Why 2-Fano?

Remark 5 There are some results about the existence of rational surfaces on 2-Fano manifolds.

Remark 6 Without the assumption X: Fano, there exist infinitely many such toric manifolds of a fixed dimension (You will see later).

Remark 7 For the property $X \times Y$: 2-Fano (X, Y): 2-Fano, we need the assumption $ch_2(X)$: nef (not positive).

Today Which toric Fano manifold is a 2-Fano manifold?

From now on, X: projective toric manifold .

Remark 8 Of course, 2-Fano \Rightarrow Fano by definition, only we have to do is the calculation of intersection numbers.

However, I want to do this classification by using a Mori theoretical method.

2-Mori theory?

Mori theory \leftrightarrow rational curves 2-Mori theroy \leftrightarrow rational surfaces • Preliminay

 $X = X_{\Sigma}$: projective toric manifold associated to a fan Σ .

 $G(\Sigma) = \{$ the primitive generaters of 1-dimensional cones in $\Sigma \}$ = $\{x_1, x_2, \ldots\}$

 $Z_2(X) := \{ \sum a_i S_i \}$ the group of 2-cycles on X.

 $Z^2(X) := \{\sum b_i E_i\}$ the group of 2-cocycles on X.

intersection pairing

$$Z^{2}(X) \times Z_{2}(X) \longrightarrow \mathbb{Z}$$
$$(E,S) \longmapsto (E \cdot S)$$

$$S \equiv 0 \iff (E \cdot S) = 0$$
 for any $E \in Z^2(X)$
 $E \equiv 0 \iff (E \cdot S) = 0$ for any $S \in Z_2(X)$

 $N_2(X) := (Z_2(X)/\equiv) \otimes \mathbb{R}$ and $N^2(X) := (Z^2(X)/\equiv) \otimes \mathbb{R}$

2-Mori cone

 $NE_2(X) = \{ \text{the numerical classes of effective 2-cycles} \} \\ = \left\{ \left[\sum a_i S_i \right] \middle| a_i \ge 0 \right\} \subset N_2(X)$

Proposition 9 $NE_2(X) \subset N_2(X)$ is a strongly convex polyhedral cone.

So, $ch_2(X)$: nef \Leftrightarrow $(ch_2(X) \cdot S) \ge 0$ for any extremal surface $S \in NE_2(X)$.

Remark 10 In ordinary Mori theory, extremal ray $R \subset NE(X) \leftrightarrow$ contraction $\varphi_R : X \rightarrow \overline{X}$. By this correspondence, we can find extremal curves easily.

does there exist a correspondence like in this Remark?

Question For 2-Mori theory,

• Simple example

•
$$\mathbb{P}^1 \times \mathbb{P}^3$$
 dim $N_2(X) = 2$.
 $NE_2(X) = \mathbb{R}_{\geq 0}[\text{pt.} \times \mathbb{P}^2] + \mathbb{R}_{\geq 0}[\mathbb{P}^1 \times \mathbb{P}^1].$

•
$$\mathbb{P}^2 \times \mathbb{P}^2$$
 dim $N_2(X) = 3$.
 $NE_2(X) = \mathbb{R}_{\geq 0}[\text{pt.} \times \mathbb{P}^2] + \mathbb{R}_{\geq 0}[\mathbb{P}^1 \times \mathbb{P}^1] + \mathbb{R}_{\geq 0}[\mathbb{P}^2 \times \text{pt.}].$

In each case, every extremal surface is contracted by a projection.

• An expression of numerical classes

 $Y = Y_{\sigma} \subset X$: a *T*-invariant subvariety of dim Y = l associated to $\sigma \in \Sigma$.

 $G(\Sigma) = \{x_1, \ldots, x_m\}$. $x_i \leftrightarrow D_{x_i}$: *T*-invariant prime divisor.

$$I_Y = I_Y(X_1, \dots, X_m) := \sum_{1 \le i_1, \dots, i_l \le m} (D_{x_{i_1}} \cdots D_{x_{i_l}} \cdot Y) X_{i_1} \cdots X_{i_l}$$
$$\in \mathbb{Z}[X_1, \dots, X_m] \quad (x_i \leftrightarrow X_i)$$

Remark 11 I_Y has all the informations of intersection numbers of Y on X. So, we consider I_Y as the numerical class of $Y \in N_l(X)$. • Example

 $C = C_{\tau} \subset X$: *T*-invariant curve.

$$I_C = \sum (D_i \cdot C) X_i$$

is a polynomial of degree 1.

 $\implies \sum (D_i \cdot C) x_i = 0$ is a Reid's wall relation associated to τ .

Namely, I_C is calculated from the wall relation immediately.

 $S = S_{\tau} \subset X$: be a *T*-invariant surface.

Theorem 12 I_S is calculated as follows:

(1)
$$S \cong \mathbb{P}^2$$
 Let $C \subset S$ be a *T*-invariant curve. Then,
 $I_S = (I_C)^2$.

(2)
$$S \cong F_{\alpha}$$
 Let $C_{f} \subset S$ be a fiber of $S = F_{\alpha} \to \mathbb{P}^{1}$,
while let C_{n} be the negative section of S . Then,

$$I_S = \alpha (I_{C_f})^2 + 2I_{C_f} I_{C_n}.$$

(3) *otherwise Omit.* Using the sequence

$$F_{\alpha} \leftarrow \cdots \leftarrow S,$$

where \leftarrow is a blow-up, we can calculate I_S explicitly.

• Intersection numbers with $ch_1(X)$ or $ch_2(X)$

(1)

$$-K_X = c_1(X) = ch_1(X) = X \setminus T = \sum_{x \in \mathsf{G}(\Sigma)} D_x$$
$$I_C = \sum_i a_i X_i \implies (ch_1(X) \cdot C) = \sum_i a_i$$

(2)

$$ch_2(X) = \frac{1}{2} \sum_{x \in \mathsf{G}(\Sigma)} D_x^2$$

$$I_S = \sum_{i,j} a_{ij} X_i X_j \implies (ch_2(X) \cdot S) = \frac{1}{2} \sum_i a_{ii}$$

 \circ An application

X: toric manifold of $\rho(X) = 2$.

Theorem 13 (Kleinschmidt) X is \mathbb{P}^m -bdl over \mathbb{P}^n .

Let $X = X_{\Sigma} = \mathbb{P}_{\mathbb{P}^{n-1}} \left(\mathcal{O} \oplus \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_{m-1}) \right)$, where $a_1 \ge \cdots \ge a_{m-1} \ge 0$, $m + n - 2 = \dim X =: d$.

Put
$$G(\Sigma) = \{x_1, \dots, x_m, y_1, \dots, y_n\}$$
, and let
 $x_1 + \dots + x_m = 0,$
 $y_1 + \dots + y_n = a_1 x_1 + \dots + a_{m-1} x_{m-1},$
(2)

be the extremal wall relations (\leftrightarrow extremal ray of NE(X)).

 $\begin{array}{rcl} (1) & \leftrightarrow & C_1 \\ (2) & \leftrightarrow & C_2 \end{array}$

<u>First</u>, we determine the extremal rays of $NE_2(X)$.

By calculating rational functions for a \mathbb{Z} -basis $\{x_1, \ldots, x_{m-1}, y_1, \ldots, y_{n-1}\}$, we have the relations

$$D_{1} - D_{m} + a_{1}E_{n} = 0,$$

$$D_{2} - D_{m} + a_{2}E_{n} = 0,$$

$$\dots$$

$$D_{2} - D_{m} + a_{2}E_{n} = 0,$$

$$E_{1} - E_{n} = 0,$$

$$E_{2} - E_{n} = 0,$$

$$\dots$$

$$E_{n-1} - E_{n} = 0,$$

where $D_1, \ldots, D_m, E_1, \ldots, E_n$ are *T*-invariant prime divisors corresponding to $x_1, \ldots, x_m, y_1, \ldots, y_n$. Therefore, for $1 \leq i, j \leq m-1$,

$$D_j = D_i + (a_i - a_j)E_n, \tag{3}$$

and

$$E_1 = E_2 = \dots = E_n. \tag{4}$$

Every (d-2)-dimensional cone $\tau \in \Sigma$ is expressed as

$$\tau = \mathbb{R}_{\geq 0} x_{i_1} + \dots + \mathbb{R}_{\geq 0} x_{i_k} + \mathbb{R}_{\geq 0} y_{j_1} + \dots + \mathbb{R}_{\geq 0} y_{j_l}$$
for some $1 \leq i_1 < \dots < i_k \leq m, \ 1 \leq j_1 < \dots < j_l \leq n$ s.t. $k < m, \ l < n$ and $k + l = d - 2$.

So, the corresponding T-invariant surface S_{τ} is

$$S_{\tau} = D_{i_1} \cdots D_{i_k} E_{j_1} \cdots E_{j_l} \in N_2(X).$$

By using (3) and (4), any S_{τ} is expressed as a linear combination of 2-cycles

 $D_1 \cdots D_p E^q$ $(p \le m-1, q \le n-1, p+q=d-2)$

whose coefficients are non-negative (remark that $i < j \Rightarrow a_i - a_j \ge 0$).

Moreover, since $D_1 \cdots D_m = E_1 \cdots E_n = 0$ by wall relations (1) and (2), the possibilities for the generators of $NE_2(X)$ are

$$S_1 := D_1 \cdots D_{m-3} E^{n-1},$$

 $S_2 := D_1 \cdots D_{m-2} E^{n-2}$ and
 $S_3 := D_1 \cdots D_{m-1} E^{n-3}.$

In fact, the following holds:

$$NE_{2}(X) = \mathbb{R}_{\geq 0} S_{1} + \mathbb{R}_{\geq 0} S_{2} + \mathbb{R}_{\geq 0} S_{3} \text{ if } m \geq 3, n \geq 3.$$

$$NE_{2}(X) = \mathbb{R}_{\geq 0} S_{2} + \mathbb{R}_{\geq 0} S_{3} \text{ if } m = 2, n \geq 3.$$

$$NE_{2}(X) = \mathbb{R}_{\geq 0} S_{1} + \mathbb{R}_{\geq 0} S_{2} \text{ if } m \geq 3, n = 2.$$

On the other hand, for each case, dim $N_2(X) = 3$, dim $N_2(X) = 2$ and dim $N_2(X) = 2$, respectively.

So, $NE_2(X)$ is a simplicial cone for each case, and S_1 , S_2 and S_3 are extremal surfaces. <u>Next</u>, we will check when X becomes a 2-Fano manifold.

• Positivity of $ch_1(X)$

Let C_2 be the *T*-invariant curve which generates the extremal ray corresponding to the wall relation (2). Then,

$$(-K_X \cdot C_2) = n - (a_1 + \dots + a_{m-1}).$$

Therefore, X is a Fano manifold if and only if

$$n - (a_1 + \dots + a_{m-1}) > 0.$$
(5)

• Non-negativity of $ch_2(X)$

Since $S_1 \cong S_3 \cong \mathbb{P}^2$, $(ch_2(X) \cdot S_1) \ge 0$ and $(ch_2(X) \cdot S_3) \ge 0$ are trivial by Theorem 12.

On the other hand, we can easily check that $S_2 \cong F_{a_{m-1}}$. Again by Theorem 12, we have

$$I_{S_2} = a_{m-1}(I_{C_1})^2 + 2I_{C_1}I_{C_2}$$

= $a_{m-1}(X_1 + \dots + X_m)^2 +$
 $2(X_1 + \dots + X_m)(Y_1 + \dots + Y_n - (a_1X_1 + \dots + a_{m-1}X_{m-1})).$

So, we obtain

$$(ch_2(X) \cdot S_2) = ma_{m-1} - 2(a_1 + \dots + a_{m-1}).$$
 (6)

In (6), suppose that $m \ge 3$ and $(ch_2(X) \cdot S_2) \ge 0$. Then,

$$(ch_2(X) \cdot S_2) = (m-2)a_{m-1} - 2(a_1 + \dots + a_{m-2}).$$

The assumption $a_1 \geq \cdots \geq a_{m-1} \geq 0$ says that

$$a_1 = \cdots = a_{m-1} = 0,$$

that is, $X \cong \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}$.

On the other hand, suppose that m = 2 in (6). Then, $(ch_2(X) \cdot S_2) = 0$, that is, $ch_2(X)$ is nef.

By (5), we can summarize as follows:

Theorem 14 If X is a toric 2-Fano manifold of Picard number 2, then X is one of the following:

(1) A direct product of projective spaces.

(2) $\mathbb{P}_{\mathbb{P}^{d-1}}(\mathcal{O} \oplus \mathcal{O}(a))$ $(1 \le a \le d-1).$

Remark 15 This calculation shows that there exist infinitely many projective toric manifolds of dimension dwhose 2nd Chern character is nef (\mathbb{P}^1 -bundles over \mathbb{P}^{d-1}). • The classification of toric 2-Fano manifolds of dimension at most 4.

dimension	# of toric Fano	# of toric 2-Fano
1	1	1
2	5	3
3	18	8
4	124	25

Remark 16 Every toric 2-Fano manifold in this table is a direct product of other lower-dimensional toric 2-Fano manifolds or a \mathbb{P}^1 -bundle over a lower-dimensional toric 2-Fano manifold.