
Cones of effective two-cycles on toric manifolds

Hiroshi Sato

Gifu Shotoku Gakuen University, Japan

August 19, 2010

The International Conference
“GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS”

dedicated to the 120th anniversary of Boris Delone

1



X: smooth projective algebraic variety over C
(projective toric manifold)

d := dimX

Definition 1 X is Fano if −KX = c1(X) = ch1(X) is ample.

# {smooth toric Fano d-folds up to ∼=} < +∞

Therefore, we can consider the classification problem for toric Fano manifolds.
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◦ (classical) Results

dimension # of toric Fano
1 1 P1
2 5 P2, P1 × P1, F1, S7, S6
3 18 Batyrev, Watanabe-Watanabe
4 124 Batyrev, Sato

• Picard number ρ(X) = 1, 2, 3, 2d− 1, 2d (upper bound).

• Symmetric and pseudo-symmetric.

• With a divisorial contraction to a point or a curve.

• Certain fixed indices.

• · · ·
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◦ (recent) Results

dimension # of toric Fano
5 866 Kreuzer-Nill
6 7622 Øbro
7 72256 Øbro
... ... ...

◦ Øbro (2007) constructed an algorithm SFP.

d ∈ N −→ SFP −→ all the toric Fano d-folds
input output

=⇒ The classification of toric Fano manifolds has been completed.
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Definition 2 (Starr) A Fano manifold X is a 2-Fano manifold

if ch2(X) = 1
2(c

2
1 − 2c2) is a nef 2-cocycle.

Definition 3 A 2-cocycle E is nef if (E · S) ≥ 0 for any surface S on X.

Example 4 (1) Pd.

(2) X × Y (X, Y 2-Fano).

(3) complete intersection (d1, . . . , dc) ⊂ Pn s.t.
∑

d2i ≤ n+1.

(4) Grassmannian G(k, n) s.t. 2k ≤ n ≤ 2k +2.

For more (non-toric) examples, see Araujo-Castravet (arXiv 0906.5388).
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◦ Why 2-Fano?

Remark 5 There are some results about

the existence of rational surfaces on 2-Fano manifolds.

Remark 6 Without the assumption X: Fano,

there exist infinitely many such toric manifolds of a fixed dimension

(You will see later).

Remark 7 For the property X × Y : 2-Fano (X,Y : 2-Fano),

we need the assumption ch2(X): nef ( not positive).
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Today Which toric Fano manifold is a 2-Fano manifold?

From now on, X: projective toric manifold .

Remark 8 Of course, 2-Fano ⇒ Fano by definition,

only we have to do is the calculation of intersection numbers.

However, I want to do this classification by using a Mori theoretical method.

2-Mori theory?

Mori theory ↔ rational curves

2-Mori theroy ↔ rational surfaces
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◦ Preliminay

X = XΣ: projective toric manifold associated to a fan Σ.

G(Σ) = {the primitive generaters of 1-dimensional cones in Σ}
= {x1, x2, . . .}

Z2(X) := {
∑

aiSi} the group of 2-cycles on X.

Z2(X) := {
∑

biEi} the group of 2-cocycles on X.

intersection pairing

Z2(X)× Z2(X) −→ Z
(E,S) 7−→ (E · S)
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numerical equivalence

S ≡ 0 ⇔ (E · S) = 0 for any E ∈ Z2(X)

E ≡ 0 ⇔ (E · S) = 0 for any S ∈ Z2(X)

N2(X) := (Z2(X)/ ≡)⊗ R and N2(X) := (Z2(X)/ ≡)⊗ R

2-Mori cone

NE2(X) = {the numerical classes of effective 2-cycles}
=

{
[
∑

aiSi]
∣∣∣ ai ≥ 0

}
⊂ N2(X)
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Proposition 9 NE2(X) ⊂ N2(X) is a strongly convex polyhedral cone.

So, ch2(X): nef ⇔ (ch2(X) · S) ≥ 0 for any extremal surface S ∈ NE2(X).

Remark 10 In ordinary Mori theory,

extremal ray R ⊂ NE(X) ↔ contraction φR : X → X.

By this correspondence, we can find extremal curves easily.

Question For 2-Mori theory,

does there exist a correspondence like in this Remark?
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◦ Simple example

• P1 × P3 dimN2(X) = 2.

NE2(X) = R≥0[pt.× P2] + R≥0[P1 × P1].

• P2 × P2 dimN2(X) = 3.

NE2(X) = R≥0[pt.× P2] + R≥0[P1 × P1] + R≥0[P2 × pt.].

In each case, every extremal surface is contracted by a projection.
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◦ An expression of numerical classes

Y = Yσ ⊂ X: a T -invariant subvariety of dimY = l associated to σ ∈ Σ.

G(Σ) = {x1, . . . , xm}. xi ↔ Dxi : T -invariant prime divisor.

IY = IY (X1, . . . , Xm) :=
∑

1≤i1,...,il≤m
(Dxi1

· · ·Dxil
· Y )Xi1 · · ·Xil

∈ Z[X1, . . . , Xm] (xi ↔ Xi)

Remark 11 IY has all the informations of intersection numbers of Y on X.

So, we consider IY as the numerical class of Y ∈ Nl(X).
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◦ Example

C = Cτ ⊂ X: T -invariant curve.

IC =
∑

(Di · C)Xi

is a polynomial of degree 1.

=⇒
∑
(Di · C)xi = 0 is a Reid’s wall relation associated to τ .

Namely, IC is calculated from the wall relation immediately.
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S = Sτ ⊂ X : be a T -invariant surface.

Theorem 12 IS is calculated as follows:

(1) S ∼= P2 Let C ⊂ S be a T -invariant curve. Then,

IS = (IC)
2.

(2) S ∼= Fα Let Cf ⊂ S be a fiber of S = Fα → P1,
while let Cn be the negative section of S. Then,

IS = α(ICf
)2 +2ICf

ICn.

(3) otherwise Omit. Using the sequence

Fα ← · · · · · · ← S,

where ← is a blow-up, we can calculate IS explicitly.
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◦ Intersection numbers with ch1(X) or ch2(X)

(1)

−KX = c1(X) = ch1(X) = X \ T =
∑

x∈G(Σ)

Dx

IC =
∑
i

aiXi =⇒ (ch1(X) · C) =
∑
i

ai

(2)

ch2(X) =
1

2

∑
x∈G(Σ)

D2
x

IS =
∑
i,j

aijXiXj =⇒ (ch2(X) · S) =
1

2

∑
i

aii
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◦ An application

X: toric manifold of ρ(X) = 2.

Theorem 13 (Kleinschmidt) X is Pm-bdl over Pn.

Let X = XΣ = PPn−1
(
O ⊕O(a1)⊕ · · · ⊕ O(am−1)

)
,

where a1 ≥ · · · ≥ am−1 ≥ 0, m+ n− 2 = dimX =: d.

Put G(Σ) = {x1, . . . , xm, y1, . . . , yn}, and let

x1 + · · ·+ xm = 0, (1)

y1 + · · ·+ yn = a1x1 + · · ·+ am−1xm−1, (2)

be the extremal wall relations (↔ extremal ray of NE(X)).

(1) ↔ C1

(2) ↔ C2
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First, we determine the extremal rays of NE2(X).

By calculating rational functions for a Z-basis {x1, . . . , xm−1, y1, . . . , yn−1},
we have the relations

D1 −Dm + a1En = 0,

D2 −Dm + a2En = 0,

· · ·
D2 −Dm + a2En = 0,

E1 − En = 0,

E2 − En = 0,

· · ·
En−1 − En = 0,

where D1, . . . , Dm, E1, . . . , En are

T -invariant prime divisors corresponding to x1, . . . , xm, y1, . . . , yn.
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Therefore, for 1 ≤ i, j ≤ m− 1,

Dj = Di + (ai − aj)En, (3)

and

E1 = E2 = · · · = En. (4)

Every (d− 2)-dimensional cone τ ∈ Σ is expressed as

τ = R≥0 xi1 + · · ·+ R≥0 xik + R≥0 yj1 + · · ·+ R≥0 yjl
for some 1 ≤ i1 < · · · < ik ≤ m, 1 ≤ j1 < · · · < jl ≤ n

s.t. k < m, l < n and k + l = d− 2.

So, the corresponding T -invariant surface Sτ is

Sτ = Di1 · · ·DikEj1 · · ·Ejl ∈ N2(X).
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By using (3) and (4),

any Sτ is expressed as a linear combination of 2-cycles

D1 · · ·DpE
q (p ≤ m− 1, q ≤ n− 1, p+ q = d− 2)

whose coefficients are non-negative (remark that i < j ⇒ ai − aj ≥ 0).

Moreover, since D1 · · ·Dm = E1 · · ·En = 0 by wall relations (1) and (2),

the possibilities for the generaters of NE2(X) are

S1 := D1 · · ·Dm−3E
n−1,

S2 := D1 · · ·Dm−2E
n−2 and

S3 := D1 · · ·Dm−1E
n−3.
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In fact, the following holds:

NE2(X) = R≥0 S1 + R≥0 S2 + R≥0 S3 if m ≥ 3, n ≥ 3.

NE2(X) = R≥0 S2 + R≥0 S3 if m = 2, n ≥ 3.

NE2(X) = R≥0 S1 + R≥0 S2 if m ≥ 3, n = 2.

On the other hand, for each case,

dimN2(X) = 3, dimN2(X) = 2 and dimN2(X) = 2, respectively.

So, NE2(X) is a simplicial cone for each case,

and S1, S2 and S3 are extremal surfaces.
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Next, we will check when X becomes a 2-Fano manifold.

◦ Positivity of ch1(X)

Let C2 be the T -invariant curve which generates

the extremal ray corresponding to the wall relation (2). Then,

(−KX · C2) = n−
(
a1 + · · ·+ am−1

)
.

Therefore, X is a Fano manifold if and only if

n−
(
a1 + · · ·+ am−1

)
> 0. (5)
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◦ Non-negativity of ch2(X)

Since S1
∼= S3

∼= P2,
(ch2(X) · S1) ≥ 0 and (ch2(X) · S3) ≥ 0 are trivial by Theorem 12.

On the other hand, we can easily check that S2
∼= Fam−1.

Again by Theorem 12, we have

IS2
= am−1(IC1

)2 +2IC1
IC2

= am−1 (X1 + · · ·+Xm)2+

2(X1 + · · ·+Xm)
(
Y1 + · · ·+ Yn −

(
a1X1 + · · ·+ am−1Xm−1

))
.

So, we obtain

(ch2(X) · S2) = mam−1 − 2(a1 + · · ·+ am−1). (6)
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In (6), suppose that m ≥ 3 and (ch2(X) · S2) ≥ 0. Then,

(ch2(X) · S2) = (m− 2)am−1 − 2(a1 + · · ·+ am−2).

The assumption a1 ≥ · · · ≥ am−1 ≥ 0 says that

a1 = · · · = am−1 = 0,

that is, X ∼= Pm−1×Pn−1.

On the other hand, suppose that m = 2 in (6).

Then, (ch2(X) · S2) = 0, that is, ch2(X) is nef.

By (5), we can summarize as follows:
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Theorem 14 If X is a toric 2-Fano manifold of Picard number 2,

then X is one of the following:

(1) A direct product of projective spaces.

(2) PPd−1(O ⊕O(a)) (1 ≤ a ≤ d− 1).

Remark 15 This calculation shows that

there exist infinitely many projective toric manifolds of dimension d

whose 2nd Chern character is nef (P1-bundles over Pd−1).
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◦ The classification of toric 2-Fano manifolds of dimension at most 4.

dimension # of toric Fano # of toric 2-Fano
1 1 1
2 5 3
3 18 8
4 124 25

Remark 16 Every toric 2-Fano manifold in this table is

a direct product of other lower-dimensional toric 2-Fano manifolds or

a P1-bundle over a lower-dimensional toric 2-Fano manifold.
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