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Riemann-Roch number

(L,∇L) prequantum line bundle def⇔

(
L : Hermitian line bundle
∇L : connection with

√
−1

2π
F∇ = ω↓

(M, ω) closed symplectic manifold

Fix a compatible almost complex structure J

⇒ Spinc Dirac operator D : Γ(
^•

T ∗M0,1 ⊗ L) → Γ(
^•

T ∗M0,1 ⊗ L)

If (M, ω, J) is Kähler and L is holomorphic, then D =
√

2(∂̄⊗L+ ∂̄∗⊗L).

Definition (Riemann-Roch number)

RR(M, ω) = ind D = dim ker D0 − dim ker D1 ∈ Z

RR(M, ω) does not depend on the choice of J. Moreover,

RR(M, ω) =

Z
M

eωTd(M).

If (M, ω, J) is Kähler and L is holomorphic, then

RR(M, ω) =
X

i

(−1)i dim H i(M,OL).
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Riemann-Roch number

Example

(L,∇L) =
`
R× R/Z× C, d − 2π

√
−1xdy

´
/(x , y , z) ∼ (x + n, y , e2π

√
−1ny z)

↓
(M, ω) =

`
(R/Z)2, dx ∧ dy

´
RR(M, ω) =

Z
M

eωTd(M) =

Z
M

ω = 1
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Bohr-Sommerfeld fiber

π : (M2n, ω) → Bn Lagrangian fibration def⇔

8><>:
π : fiber bundle
ω|fiber ≡ 0
dim fiber = 1

2 dim M

∀fiber ∼= Rn/Zn (∵ Arnold-Liouville theorem)

(L,∇)|fiber is a flat bundle.

Definition (Bohr-Sommerfeld (BS) fiber)

π−1(b) (b ∈ B) is said to be Bohr-Sommerfeld if (L,∇)|π−1(b) is trivially flat.

π−1(b) is BS ⇔ ∃non-zero parallel section of (L,∇)|π−1(b).

BS fibers appear discretely.
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Bohr-Sommerfeld fiber

Example (continued)

(L,∇L) =
`
R× R/Z× C, d − 2π

√
−1xdy

´
/(x , y , z) ∼ (x + n, y , e2π

√
−1ny z)

↓
(M, ω) =

`
(R/Z)2, dx ∧ dy

´
↓ π(x , y) = x
B = R/Z

π−1(x) is BS ⇔ x = 0 ∈ R/Z
∵ For s ∈ Γ(L|π−1(x)) solving the equation

0 = ∇L
∂y s

= ∂y s − 2π
√
−1xs

∴ s = s(0)e2π
√
−1xy (local solution)

Since π−1(x) = R/Z, s is global ⇔ s(0) = s(1) = s(0)e2π
√
−1x ⇔

x = 0 ∈ R/Z
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RR=# BS

Theorem (Andersen ’97)

RR(M, ω) = #BS fibers

RR(M, ω) and #BS fibers correspond to the dimensions of the quantum
Hilbert spaces of Spinc quantization and the geometric quantization
using a real polarization, respectively.
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RR=# BS

Similar phenomena have been observed for Lagrangian fibrations “with
singular fibers" and “degenerate" symplectic cases, such as,

moment map of a nonsingular toric variety (Danilov ’78)

RR(M, ω) = dim H0(M;OL) = #µ(M) ∩ Zn = #BS fibers

Gelfand-Cetlin’s completely integrable system on the complex flag
manifold (Guillemin-Sternberg ’83)

Goldman’s completely integrable system on the moduli space of flat
SU(2)-bundles on a Riemann surface (Jeffrey-Weitsman ’92)

Pre-symplectic toric manifolds (Karshon-Tolman ’93)

Torus manifolds (Masuda ’99, Hattori-Masuda ’03)

These phenomena suggest a localization of the index to BS fibers.

Question

Make clear the mechanism that controls these phenomena.
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Purpose

Purpose of this talk

To give a partial answer of this question. Namely,
1 Define an “index" of a Dirac-type operator on an open manifold with

certain geometric structure on the end.
2 A localization for the index.
3 Application to geometric quantization
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Main Theorem

W Z2-graded Cl(TM)-module bundle
↓
M Riemannian manifold (possibly non-compact)

⊂

V open set

Theorem (Fujita-Furuta-Y ’09)

Suppose that M \V is compact and V is equipped with an “acyclic compatible
system {(πα, Dα)}α∈A". Then, there exists an integer ind(M, V ) depending
on all the data such that ind(M, V ) satisfies the following properties.

1 ind(M, V ) is invariant under continuous deformation of the data.
2 For M closed, ind(M, V ) = ind D.
3 For V = M, ind(M, V ) = 0 (vanishing)
4 For M ′ ⊂ M admissible open neighborhood of M \ V,

ind(M, V ) = ind(M ′, M ′ ∩ V ) (excision)

5 ind(M1 tM2, V ) = ind(M1, M1 ∩ V ) + ind(M2, M2 ∩ V ) (sum formula)
6 product formula “ ind ((M1, V1)× (M2, V2)) = ind(M1, V1) ind(M2, V2)"
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Main Theorem

Corollary (Localization)

Under the above assumption, suppose M is closed and there exists an open
covering M = ∪k

i=1Oi ∪ V such that {Oi} are mutually disjoint. Then,

ind D =
kX

i=1

ind(Oi , Oi ∩ V )
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What is an acyclic compatible system?
Case 1: CP1

Let µ : (M, ω) = (CP1, 2ωFS) → [0, 2] be a moment map defined by

µ([z0 : z1]) = 2
|z1|2

‖z‖2

and (L,∇) = (H,∇)⊗2, where (H,∇) is the hyperplane bundle with
connection.

W := ∧•T ∗M0,1 ⊗ L = ∧evenT ∗M0,1 ⊗ L⊕ ∧oddT ∗M0,1 ⊗ L

Note: T ∗µ−1(b)⊗ C ∼= T ∗M0,1|π−1(b) ∀b ∈ (0, 2)

D =
√

2(∂̄ ⊗ L + ∂̄∗ ⊗ L) : Γ(W ) 	

µ−1(b) is BS ⇔ b ∈ [0, 2] ∩ Z
V := M \ µ−1(Z)

Oi : an open neighborhood of a Bohr-Sommerfeld fiber
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What is an acyclic compatible system?
Case 1: CP1

b ∈ Im µ ∩ Z ⇔∃parallel section (6= 0) of (L,∇)|µ−1(b)

⇔H0(µ−1(b); (L,∇)|µ−1(b)) 6= 0 (Note: (L,∇)|µ−1(b) flat)

⇔H•(µ−1(b); (L,∇)|µ−1(b)) 6= 0 (∵ µ−1(b) : torus)

⇔The kernel of the de Rham operator Db of µ−1(b) with

coefficients in L|µ−1(b)is nontrivial.

By bundling Db w. r. t. b, we can obtain the following structure on V .

Acyclic compatible system -simplest case

µ|V : V → µ(V ) S1-bundle

Dfiber : Γ (∧•T ∗[µ|V ]⊗ L|V ) � de Rham operator along fibers of µ|V .

Dfiber ◦ c(ũ) + c(ũ) ◦ Dfiber = 0 ∀b ∈ µ(V ) ∀u ∈ Tbµ(V )

ker(Dfiber|µ−1(b)) = 0 ∀b ∈ µ(V )

This is a simplest example of an acyclic compatible system.
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What is an acyclic compatible system?
Case 2: CP1 × CP1

Let (M, ω) = (CP1, 2ωFS)× (CP1, 2ωFS) and (L,∇) = (H,∇)⊗2 � (H,∇)⊗2.
Let us consider µ× µ.

0 1 2

1

2

Figure: image of µ× µ

Put V = M \ (µ× µ)−1(Z2). In this case µ|V is no more T 2-bundle. But,
locally there exist acyclic compatible systems on V , i.e.
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What is an acyclic compatible system?

Structure on Vi = π−1(Ui) (i = 1, . . . , 5)

V = V1

π1

��
V1/S1

1 × S1
2

∪ V2

π2

��
V2/S1

2

∪ V3

π3

��
V3/S1

1

∪ V4

π4

��
V4/S1

2

∪ V5

π5

��
V5/S1

1

∀i , Di : Γ (∧•T ∗[πi |Vi ]⊗ L|Vi ) � acyclic compatible system in the above
sense.

On each overlap, (πi , Di)’s satisfy some compatibility conditions.
Ex.

Di ◦ Dj + Dj ◦ Di is non-negative on Γ(W |Vi∩Vj ).

U1

U4U2

U5

U3
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Idea of proof
- Witten’s deformation

(W , c) Z2-graded Cl(TM)-module bundle
↓
M complete Riemannian manifold

For t ≥ 0 define
Dt := D + th,

where h ∈ End(W ) satisfying

Hermitian

degree-one

supph := {x ∈ M | ker(hx : Wx → Wx) 6= 0} is compact

h ◦ c + c ◦ h = 0

Point

ind Dt is defined independently of ∀t � 0 in an appropriate sense. In
particular, ind Dt is described in terms of the data restricted to a
neighberhood of supph.

In our case what should we take as h? → acyclic compatible system
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Outline of proof

1 Deform V cylindrically.

N

M M′

N

V ′ := N × (0,∞)V

2 For t ≥ 0 define
Dt := D + t

X
α∈A

ραDαρα.

Fact (local index)

1 dim ker Dt ∩ L2 < +∞ (∀t � 0).

2 Moreover, dim ker D0
t ∩ L2 − dim ker D1

t ∩ L2 is independent of ∀t � 0.

ind(M, V ) := dim ker D0
t ∩ L2 − dim ker D1

t ∩ L2 ∈ Z (∀t � 0)

3 Check ind(M, V ) is independent of a choice of a cut locus.

A general Fredholm theory is necessary to prove the product formula.
Similar to considering an “adiabatic limit"
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Application to Lagrangian fibrations

Theorem (Fujita-Furuta-Y ’08, ’09)

For a prequantized closed Lagrangian fibration possibly with singular fibers,
RR(M, ω) is localized at singular fibers and BS fibers.

Corollary (Andersen ’97)

For a prequantized closed Lagrangian fibration without singular fibers,

RR(M, ω) = #BS fibers.

Theorem (Fujita-Furuta-Y ’09)

For a prequantized four-dimensional closed locally toric Lagrangian fibration,

RR(M, ω) = #(both singular and nonsingular) BS-fibers.
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