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Introduction
Riemann-Roch number

L: Hermitian line bundle
L, V) prequantum line bundle &
(L V7) preq V*: connection with ¥ Fy = w

!

(M,w) closed symplectic manifold
@ Fix a compatible almost complex structure J

= Spin° Dirac operator D: F(/\' T"M'oL) — r(/\' "M @ L)

@ If (M,w,J) is Kahler and L is holomorphic, then D = v2(d ® L+ 5* @ L).

Definition (Riemann-Roch number)

RR(M,w) = ind D = dimker D° — dimker D' € Z

@ RR(M,w) does not depend on the choice of J. Moreover,
RR(M,w) = / e’ Td(M).
M

@ If (M,w,J) is Kéhler and L is holomorphic, then
RR(M,w) = "(—1)'dim H'(M, Oy).



Introduction
Riemann-Roch number

(L, V") = (R x R/Z x C,d — 2ny/—1xdy) /(X,¥,2) ~ (x + n,y, ™~V z)
!

(M,w) = ((R/Z)?, dx A dy)

° RR(M,w):/Me“Td(M):/Mw:




Introduction
Bohr-Sommerfeld fiber

«: fiber bundle
7: (M?",w) — B" Lagrangian fibration & { wjper = 0
dim fiber = 1 dim M
@ Viiber =2 R"/Z" (-.- Arnold-Liouville theorem)
@ (L, V)lfiver is a flat bundle.

Definition (Bohr-Sommerfeld (BS) fiber)

7~ '(b) (b € B) is said to be Bohr-Sommerfeld if (L, V)| -1 s trivially flat.

@ 7~ '(b) is BS < 3non-zero parallel section of (L, V) |r=1(5)-
@ BS fibers appear discretely.



Introduction

Bohr-Sommerfeld fiber

Example (continued)

(L, V") = (R x R/Z x C,d — 2nv/—1xdy) /(X,¥,2) ~ (x + n,y, ™"V z)

1

(M, w) = ((R/Z), dx A dy)
L m(x,y)=x
B=R/Z

@ 7 '(x)isBS & x =0cR/Z
" For s € T(L|,-1()) solving the equation

0=Vj5,s
= 0ys —2mv—1xs

21/ —1xy (

-.s=5(0)e local solution)

Since 7~ '(x) = R/Z, s is global < s(0) = s(1) = 5(0)&*™V~ ™ &
x=0€eR/Z




Introduction
RR=# BS

Theorem (Andersen ’97)

RR(M,w) = #BS fibers

@ RR(M,w) and #BS fibers correspond to the dimensions of the quantum
Hilbert spaces of Spin® quantization and the geometric quantization
using a real polarization, respectively.



Introduction
RR=# BS

Similar phenomena have been observed for Lagrangian fibrations “with
singular fibers" and “degenerate" symplectic cases, such as,

@ moment map of a nonsingular toric variety (Danilov '78)
RR(M,w) = dim H*(M; O,) = #u(M) N Z" = #BS fibers
@ Gelfand-Cetlin’s completely integrable system on the complex flag

manifold (Guillemin-Sternberg '83)

@ Goldman’s completely integrable system on the moduli space of flat
SU(2)-bundles on a Riemann surface (Jeffrey-Weitsman ’92)

@ Pre-symplectic toric manifolds (Karshon-Tolman ’93)
@ Torus manifolds (Masuda 99, Hattori-Masuda °03)
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RR=# BS

Similar phenomena have been observed for Lagrangian fibrations “with
singular fibers" and “degenerate" symplectic cases, such as,

@ moment map of a nonsingular toric variety (Danilov '78)
RR(M,w) = dim H*(M; O,) = #u(M) N Z" = #BS fibers
@ Gelfand-Cetlin’s completely integrable system on the complex flag

manifold (Guillemin-Sternberg '83)

@ Goldman’s completely integrable system on the moduli space of flat
SU(2)-bundles on a Riemann surface (Jeffrey-Weitsman ’92)

@ Pre-symplectic toric manifolds (Karshon-Tolman ’93)
@ Torus manifolds (Masuda 99, Hattori-Masuda °03)
These phenomena suggest a localization of the index to BS fibers.

Make clear the mechanism that controls these phenomena.




Introduction
Purpose

Purpose of this talk

To give a partial answer of this question. Namely,

@ Define an “index" of a Dirac-type operator on an open manifold with
certain geometric structure on the end.

@ A localization for the index.
© Application to geometric quantization
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Main Theorem

W Z»-graded CI( TM)-module bundle

!

M Riemannian manifold (possibly non-compact)
U

V' open set

Theorem (Fujita-Furuta-Y '09)

Suppose that M\ V is compact and V is equipped with an “acyclic compatible
system {(wa, Do) }aca" Then, there exists an integer ind(M, V) depending
on all the data such that ind(M, V) satisfies the following properties.

@ ind(M, V) is invariant under continuous deformation of the data.
@ For M closed, ind(M, V) = ind D.
© ForV =M, ind(M, V) = 0 (vanishing)
© For M’ ¢ M admissible open neighborhood of M\ V,
ind(M, V) = ind(M', M' 0 V) (excision)

Q@ ind(M; UM, V) = ind(Mi, M; 0 V) +ind(Mz, M> N V) (sum formula)
Q@ product formula “ind (M1, Vi) x (M, Vo)) = ind(Ms, V4)ind(Me, Vs)"




Main theorem
Main Theorem

Corollary (Localization)

Under the above assumption, suppose M is closed and there exists an open
covering M = UK, O; U V such that {O;} are mutually disjoint. Then,

k
ind D = "ind(0;, 0N V)

i=1




Main theorem

What is an acyclic compatible system?
Case 1: CP!

Let u: (M,w) = (CP',2wes) — [0, 2] be a moment map defined by

2
o 2) =2 50

and (L, V) = (H, V)®2, where (H, V) is the hyperplane bundle with
connection.

@ W =A" T*M0,1 ® L = /\evenT*MOJ ® L@ /\odd T*MOJ ® L
Note: T~ '(b) ® C = T*M%'| 1) Vb € (0,2)

@ D=V20RL+d*®L): I(W)O

@ 1, '(b)isBSe be[0,2]NZ

o V:=M\p'2)

@ O;: an open neighborhood of a Bohr-Sommerfeld fiber



Main theorem

What is an acyclic compatible system?

Case 1: CP!

b € Imp N Z < 3parallel section (# 0) of (L, V)|, -1
& H(u(b); (L, V)], —1(6)) # 0 (Note: (L, V)|, 15 flat)
S H (7 (0): (L, V)|, 1) # 0 (17 (B) : torus)
&The kernel of the de Rham operator Dj, of 1~ (b) with
coefficients in L|,—1)is nontrivial.



Main theorem

What is an acyclic compatible system?

Case 1: CP!

b € Imp N Z < 3parallel section (# 0) of (L, V)|, -1
& H(u(b); (L, V)], —1(6)) # 0 (Note: (L, V)|, 15 flat)
S H (7 (0): (L, V)|, 1) # 0 (17 (B) : torus)
&The kernel of the de Rham operator Dj, of 1~ (b) with

coefficients in L|,—1)is nontrivial.

By bundling Dy, w. r. t. b, we can obtain the following structure on V.

Acyclic compatible system -simplest case

@ ulv: V — u(V) S'-bundle

@ Diper: T (A*T*[1]v] ® L|v) © de Rham operator along fibers of |y .
@ Dyiper 0 c(U) + c(U) o Diper = 0 Vb € p(V) Yu € Tpu(V)

@ ker(Dibverl,~1(5)) = 0 Vb € (V)

This is a simplest example of an acyclic compatible system.
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What is an acyclic compatible system?
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Main theorem

What is an acyclic compatible system?

Case 2: CP' x CP!

Let (M,w) = (CP',2wrs) x (CP',2wrs) and (L, V) = (H, V)®2 K (H, V)®2.
Let us consider u x p.

Voo ys
VoYY ys
1l Vo s
Voo vs
Yo

0 1 2

Figure: image of u x

Put V = M\ (u x 1)~ '(Z3). In this case |y is no more T2-bundle. But,
locally there exist acyclic compatible systems on V, i.e.



Main theorem
What is an acyclic compatible system?

Structure on V; = 7~ "(U)) (i = 1,...,5)

V= Vi u VW U Vz U Vs U W
PO
Vi/Six S /Sl Va/Sl  Vi/Sh  Ve/S]

@ Vi, Di: T (AT [mi|lv] ® L|v,) O acyclic compatible system in the above
sense.

@ On each overlap, (wi, D;)’s satisfy some compatibility conditions.
Ex.

D; o Dj + Dj o D; is non-negative on T'(W|v,nv,).

T }




Main theorem

Idea of proof
- Witten’s deformation

(W, c) Zy-graded CI( TM)-module bundle
1

M complete Riemannian manifold

For t > 0 define
D; := D + th,

where h € End(W) satisfying
@ Hermitian
@ degree-one
@ supph:= {x € M| ker(hx: Wy — W) # 0} is compact
@ hoc+coh=0

ind D; is defined independently of Vt > 0 in an appropriate sense. In
particular, ind D; is described in terms of the data restricted to a
neighberhood of supph.
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Main theorem

Idea of proof
- Witten’s deformation

(W, c) Zy-graded CI( TM)-module bundle
1

M complete Riemannian manifold

For t > 0 define
D; := D + th,

where h € End(W) satisfying
@ Hermitian
@ degree-one
@ supph:= {x € M| ker(hx: Wy — W) # 0} is compact
@ hoc+coh=0

ind D; is defined independently of Vt > 0 in an appropriate sense. In
particular, ind D; is described in terms of the data restricted to a
neighberhood of supph.

@ In our case what should we take as h? — acyclic compatible system



Main theorem
Outline of proof

@ Deform V cylindrically.

V/ = N x (0, o0)

M

@ For t > 0 define

Fact (local index)

@ dimker D;N L% < 400 (Vi > 0).

@ Moreover, dimker D? N L2 — dimker D} N L2 is independent of Vt > 0.

ind(M, V) := dimker DY N L? — dimker D} N L% € Z (vt > 0)

@ Checkind(M, V) is independent of a choice of a cut locus.

@ A general Fredholm theory is necessary to prove the product formula.
@ Similar to considering an “adiabatic limit"



Application
Application to Lagrangian fibrations

Theorem (Fujita-Furuta-Y '08, '09)

For a prequantized closed Lagrangian fibration possibly with singular fibers,
RR(M, w) is localized at singular fibers and BS fibers.
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Application to Lagrangian fibrations

Theorem (Fujita-Furuta-Y '08, '09)

For a prequantized closed Lagrangian fibration possibly with singular fibers,
RR(M, w) is localized at singular fibers and BS fibers.

Corollary (Andersen ’97)

For a prequantized closed Lagrangian fibration without singular fibers,

RR(M,w) = #BS fibers.

\

Theorem (Fujita-Furuta-Y '09)

For a prequantized four-dimensional closed locally toric Lagrangian fibration,

RR(M,w) = #(both singular and nonsingular) BS-fibers.
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